To determine the heat required in order to decompose a certain amount of a substance, we need information on the heat needed to decompose one mole of the substance. This value are readily available online and other sources. For this reaction, the heat needed is 129 kJ per 2 mol of NaHCO3. We calculate as follows:
129 KJ / 2 mol NaHCO3 (1 mol / 84.01 g ) (25.5 g NaHCO3 ) = 19.58 kJ of heat is needed.
Answer:
400°C
Explanation:
22,000 cal / (0.11 cal/g°C x 500 g) = 400°C
Answer:
222.30 L
Explanation:
We'll begin by calculating the number of mole in 100 g of ammonia (NH₃). This can be obtained as follow:
Mass of NH₃ = 100 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 100 / 17
Mole of NH₃ = 5.88 moles
Next, we shall determine the number of mole of Hydrogen needed to produce 5.88 moles of NH₃. This can be obtained as follow:
N₂ + 3H₂ —> 2NH₃
From the balanced equation above,
3 moles of H₂ reacted to produce 2 moles NH₃.
Therefore, Xmol of H₂ is required to p 5.88 moles of NH₃ i.e
Xmol of H₂ = (3 × 5.88)/2
Xmol of H₂ = 8.82 moles
Finally, we shall determine the volume (in litre) of Hydrogen needed to produce 100 g (i.e 5.88 moles) of NH₃. This can be obtained as follow:
Pressure (P) = 95 KPa
Temperature (T) = 15 °C = 15 + 273 = 288 K
Number of mole of H₂ (n) = 8.82 moles
Gas constant (R) = 8.314 KPa.L/Kmol
Volume (V) =?
PV = nRT
95 × V = 8.82 × 8.314 × 288
95 × V = 21118.89024
Divide both side by 95
V = 21118.89024 / 95
V = 222.30 L
Thus the volume of Hydrogen needed for the reaction is 222.30 L