Argon is a pure element which means that it cannot be broken down further than it already is. Methane, however, is a hydrocarbon, which means it is made out of both hydrogen and carbon and thus can be broken down to separate those elements.
They are too small to see with the naked eye
Answer : The correct option is, Malleable, shiny, and able to conduct heat or electricity.
Explanation:
Metals : Metals are the elements which can easily loose electrons and forms cations.
Properties of metals :
- They are lustrous (shine).
- They are malleable and ductile (flexible).
- They conduct heat and electricity.
- The metallic oxides are basic in nature.
- They form cations in an aqueous solution.
Non-metals : Non-metals are the elements which can easily gain electrons and form an anion.
Properties of non-metals :
- They are non-lustrous.
- They are brittle and hard in nature.
- They do not conduct heat and electricity.
- The non-metallic oxides are acidic in nature.
- They form anions in an aqueous solution.
Hence, from the given options the correct option for metal is, Malleable, shiny, and able to conduct heat or electricity.
The values of x represents that number of moles of water molecules that is present per mole of the salt magnesium sulfate. To determine the value for this, we need to know how much is the water that is lost after heating the sample assuming that all of the water molecules are evaporated leaving only the unhydrated form of the salt. We calculate as follows:
Mass of hydrated salt = 3.484 g
Mass after heating = 1.701 g
Mass lost = 3.484 g - 1.701 g = 1.783 g
The mass lost is equal to the mass of water lost.
Moles water lost = 1.783 g ( 1 mol / 18.02 g ) = 0.0989 mol H2O
Moles of unhydrated salt = 1.701 g ( 1 mol / 120.37 g ) = 0.0141 mol MgSO4
moles water / moles MgSO4 = 0.0989 mol H2O / 0.0141 mol MgSO4 = 7
Therefore, the value of x is 7.
The initial temperature of the metal = 35 °C
<h3>Further explanation</h3>
Heat can be formulated :
Q = m . c . ΔT
Q = heat, J
c = specific heat, J/g C
ΔT = temperature, °C
m = 20 g
c = 5 J/(g°C)
Q = 500 J
T₁ = 40 C
the initial temperature :
