Answer : 2.24 L / 2.24 dm³
We need to write a equation for the thermal decomposition of Calcium carbonate . The decomposition is as follows ,
The molecular mass of Calcium carbonate is ,

The reaction is already balanced.
- From the reaction , 100g of Calcium carbonate gives 1 mole of carbon dioxide.
- And at STP , we know that the volume of 1 mol of gas is 22.4L or 22.4 dm³ .
So that,
Hence ,
I hope this helps .
Temperature has a clear effect on the growth rate of salt crystals. If you carry out an experiment with salt solutions, one at room temperature, one at a colder temperature and one at a warmer temperature, you see that the warm temperature sample grows crystals faster than both the other samples, and the room temperature sample grows faster than the cold sample. This is because a higher temperature increases the rate of evaporation of the solvent, thereby speeding up the rate of growth. Different temperatures produce different amounts of crystals. Colder solutions contract, forcing minerals closer together, so they create bonds, catching impurities in their structure at the same time. These impurities interrupt the crystal pattern, forming a larger number of smaller crystals. In warmer temperatures, the distance between molecules is greater, which allows crystals to form larger, purer shapes at a much more uniform rate than can occur at colder temperatures.
Answer: it is C, why molecules have different shapes.
Explanation:
A P E X
Answer:
Mass = 47.04 g
Volume = 23.94 L
Solution:
The equation for given reaction is as follow,
BaCO₃ + 2 HNO₃ → Ba(NO₃)₂ + CO₂ + H₂O
According to this equation,
197.34 g (1 mole) BaCO₃ produces = 44 g (1 mole) of CO₂
So,
211 g of BaCO₃ will produce = X g of CO₂
Solving for X,
X = (211 g × 44 g) ÷ 197.34 g
X = 47.04 g of CO₂
As we know,
44 g (1 mole) CO₂ at STP occupies = 22.4 L volume
So,
47.04 g of CO₂ will occupy = X L of Volume
Solving for X,
X = (47.04 g × 22.4 L) ÷ 44 g
X = 23.94 L Volume
The property of water which is described in the lines above is <u>cohesion.
</u>It refers to the fact that water molecules stick to other water molecules, i. e. to themselves, as opposed to sticking to another material, which happens with adhesion. Water and capillaries don't have any connection.<u>
</u>