Answer :
.
Explanation:
It is given that,
Electric field strength, 
We know that,
Charge of electron, 
Mass of electron, 
From the definition of electric field,
...............(1)
According to Newton's second law, F = ma..........(2)
From equation (1) and (2)




or

So, the horizontal component of acceleration of an electron is
.
Hence, it is the required solution.
Answer:
F=5449 N
Explanation:
Work done is a product of force and displacement ie
Work done, W, = Force*Displacement
Power, P, is Work done/Time
where P is power, W is work done, F is force, S is displacement and t is time
In this case, F is the frictional force. Converting the power from hp to W, we multiply by 746 hence P=746*168=125328 W
Since displacement/time is velocity, then
P=FV where V is velocity in m/s
Making F the subject


F=5449 N
If the period of a satellite is T=24 h = 86400 s that means it is in geostationary orbit around Earth. That means that the force of gravity Fg and the centripetal force Fcp are equal:
Fg=Fcp
m*g=m*(v²/R),
where m is mass, v is the velocity of the satelite and R is the height of the satellite and g=G*(M/r²), where G=6.67*10^-11 m³ kg⁻¹ s⁻², M is the mass of the Earth and r is the distance from the satellite.
Masses cancel out and we have:
G*(M/r²)=v²/R, R=r so:
G*(M/r)=v²
r=G*(M/v²), since v=ωr it means v²=ω²r² and we plug it in,
r=G*(M/ω²r²),
r³=G*(M/ω²), ω=2π/T, it means ω²=4π²/T² and we plug that in:
r³=G*(M/(4π²/T²)), and finally we take the third root to get r:
r=∛{(G*M*T²)/(4π²)}=4.226*10^7 m= 42 260 km which is the height of a geostationary satellite.
1. HP is the output horsepower rating of an engine, while Brake horse power is the input brake horsepower of an engine. ... Brake horse power is the measurement of an engine's power without any power losses, while HP is less the power losses Brake horse power
A string with linear density 0.500 g/m.
Tension 20.0 N.
The maximum speed 
The energy contained in a section of string 3.00 m long as a function of
.
We are given following data for string with linear density held under tension :
μ = 0.5 
= 0.5 x 10⁻³ 
T = 20 N
If string is L = 3m long, total energy as a function of
is given by:
E = 1/2 x μ x L x ω² x A²
= 1/2 x μ x L x 
= 7.5 x 10⁻⁴ 
So, The total energy as a function of
= 7.5 x 10⁻⁴ 
Learn more about linear density problem here:
brainly.com/question/17190616
#SPJ4