Average atomic mass is =1.11 u
need brainliest
Explanation:
The given reaction will be as follows.

So, equilibrium constant for this equation will be as follows.
![K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E%7B2%7D%7D)
As it is given that concentration of all the species is 2.4. Therefore, calculate the value of equilibrium constant as follows.
![K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E%7B2%7D%7D)
= 
= 0.173
Thus, we can conclude that equilibrium constant for the given reaction is 0.173.
Answer:
The minimum molarity of acetic acid in vinegar according to given standards is 0.6660 mol/L.
Explanation:
4% acetic acid by mass means that 4 gram of acetic acid in 100 g solution.
Given that density of the vinegar is same is that of water = 1 g/mL
Mass of the vinegar solution = 100 g
Volume of the vinegar solution = V


V = 100 mL = 0.1 L
Moles of acetic acid =


The minimum molarity of acetic acid in vinegar according to given standards is 0.6660 mol/L.
A= 6
B= 2
C= 1
D= 5
E= 3
F= 4
E
θ
Cell
=
+
2.115
l
V
Cathode
Mg
2
+
/
Mg
Anode
Ni
2
+
/
Ni
Explanation:
Look up the reduction potential for each cell in question on a table of standard electrode potential like this one from Chemistry LibreTexts. [1]
Mg
2
+
(
a
q
)
+
2
l
e
−
→
Mg
(
s
)
−
E
θ
=
−
2.372
l
V
Ni
2
+
(
a
q
)
+
2
l
e
−
→
Ni
(
s
)
−
E
θ
=
−
0.257
l
V
The standard reduction potential
E
θ
resembles the electrode's strength as an oxidizing agent and equivalently its tendency to get reduced. The reduction potential of a Platinum-Hydrogen Electrode under standard conditions (
298
l
K
,
1.00
l
kPa
) is defined as
0
l
V
for reference. [2]
A cell with a high reduction potential indicates a strong oxidizing agent- vice versa for a cell with low reduction potentials.
Two half cells connected with an external circuit and a salt bridge make a galvanic cell; the half-cell with the higher
E
θ
and thus higher likelihood to be reduced will experience reduction and act as the cathode, whereas the half-cell with a lower
E
θ
will experience oxidation and act the anode.
E
θ
(
Ni
2
+
/
Ni
)
>
E
θ
(
Mg
2
+
/
Mg
)
Therefore in this galvanic cell, the
Ni
2
+
/
Ni
half-cell will experience reduction and act as the cathode and the
Mg
2
+
/
Mg
the anode.
The standard cell potential of a galvanic cell equals the standard reduction potential of the cathode minus that of the anode. That is:
E
θ
cell
=
E
θ
(
Cathode
)
−
E
θ
(
Anode
)
E
θ
cell
=
−
0.257
−
(
−
2.372
)
E
θ
cell
=
+
2.115
Indicating that connecting the two cells will generate a potential difference of
+
2.115
l
V
across the two cells.