At the first reaction when 2HBr(g) ⇄ H2(g) + Br2(g)
So Kc = [H2] [Br2] / [HBr]^2
7.04X10^-2 = [H2][Br] / [HBr]^2
at the second reaction when 1/2 H2(g) + 1/2 Br2 (g) ⇄ HBr
Its Kc value will = [HBr] / [H2]^1/2*[Br2]^1/2
we will make the first formula of Kc upside down:
1/7.04X10^-2 = [HBr]^2/[H2][Br2]
and by taking the square root:
∴ √(1/7.04X10^-2)= [HBr] / [H2]^1/2*[Br]^1/2
∴ Kc for the second reaction = √(1/7.04X10^-2) = 3.769
Answer:
a one rotation of the planet on its axis
Explanation:
The two types of motion that planets undergo are;
1) rotation of the planet about its axis
2) revolution of the planet around the sun.
In every planet there are days as shown in the image attached to the question. However, the length of day in each planet is determined by the time required for the planet to complete one rotation on its axis.
It takes the earth 1 earth day (24 hours) to complete rotation on its axis.
I think the correct answer is decrease in temperature
I feel like that’s the right one
<span>Average oxidation state = VO1.19
Oxygen is-2. Then 1.19 (-2) = -2.38
Average oxidation state of V is +2.38
Consider 100 formula units of VO1.19
There would be 119 Oxide ions = Each oxide is -2. Total charge = -2(119) = -238
The total charge of all the vanadium ions would be +238.
Let x = number of of V+2
Then 100 – x = number of V+3
X(+2) + 100-x(+3) = +238
2x + 300 – 3x = 238
-x = 238-300 = -62
x = 62
Thus 62/100 are V+2
62/100 * 100 = 62%
</span>62 % is the percentage of the vanadium atoms are in the lower oxidation state. Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.