The mass of a sample of alcohol is found to be = m = 367 g
Hence, it is found out that by raising the temperature of the given product, the mass of alcohol would be 367 g.
Explanation:
The Energy of the sample given is q = 4780
We are required to find the mass of alcohol m = ?
Given that,
The specific heat given is represented by = c = 2.4 J/gC
The temperature given is ΔT = 5.43° C
The mass of sample of alcohol can be found as follows,
The formula is c = 
We can drive value of m bu shifting m on the left hand side,
m = 
mass of alcohol (m) = 
m = 367 g
Therefore, The mass of the given sample of alcohol is
m = 367g
It requires 4780 J of heat to raise the temperature by 5.43 C in the process which yields a mass of 367 g of alcohol.
Answer:
Sn₃(PO₄)₄ - tin(IV) phosphate.
Explanation:
Hope it helps! :)
Answer:
<em>C</em><em> </em><em>.</em><em> </em><em>the</em><em> </em><em>dramatic</em><em> </em><em>scenery</em><em> </em><em>created</em><em> </em><em>by</em><em> </em><em>volcanic</em><em> </em><em>eruptions</em><em> </em><em>attracts</em><em> </em><em>tourists</em><em>. </em>
The atomic mass of K is 39
from Avogadro's law
39g of K contains 6.02x10^23 atoms
therefore if
39=6.02x19^23
X=5.11×10^22
making X the subject of the formula
X= (5.11×10^22×39)÷6.02×10^23
X= 33g