Answer:

Explanation:
From the question we are told that:
Velocity 
Force of friction f = 0
Angle 
Generally the equation for Radius of curvature is mathematically given by



Answer:
Vf=3
Explanation:
you must first write your data
data before impact
M1=1000 M2=5000
V1=0 m/s V2 =0m/s
data after impact
M1=1000 M2=5000
V1=15m/s V2=?
M1V1 +M2V2=M1V1 +M2V2f
(1000)(0)+(5000)(0)=(1000)(15)+(5000)Vf
0=15000+5000Vf
- 15000÷5000=5000Vf÷5000
Vf= -3
Vf =3
Answer:
vₐ = v_c
Explanation:
To calculate the escape velocity let's use the conservation of energy
starting point. On the surface of the planet
Em₀ = K + U = ½ m v_c² - G Mm / R
final point. At a very distant point
Em_f = U = - G Mm / R₂
energy is conserved
Em₀ = Em_f
½ m v_c² - G Mm / R = - G Mm / R₂
v_c² = 2 G M (1 /R - 1 /R₂)
if we consider the speed so that it reaches an infinite position R₂ = ∞
v_c =
now indicates that the mass and radius of the planet changes slightly
M ’= M + ΔM = M (
)
R ’= R + ΔR = R (
)
we substitute
vₐ =
let's use a serial expansion
√(1 ±x) = 1 ± ½ x +…
we substitute
vₐ = v_ c (
)
we make the product and keep the terms linear
vₐ = v_c
Answer:
Δ KE = 249158.6 kJ
Explanation:
given data
Truck mass M = 1560 Kg
Truck initial speed, u = 28 m/s
mass of car m = 1070 Kg
initial speed of car u1 = 0 m/s
solution
first we get here final speed by using conservation of momentum that is express as
Mu = (M+m) V .......................1
put here value we get
1560 × 28 = (1560 + 1070 ) V
solve it we get
final speed V = 16.60 m/s
and
Change in kinetic energy will be here
Δ KE =
.................2
put here value and we get
Δ KE =
solve it we get
Δ KE = 249158.6 kJ
A scalar quantity is a measurement of a quantity, like temperature, or mass.