when skydiving, its not just freely falling under Earth's gravity. Additional force called drag acts against the gravity which slows down the rate of fall. Drag is caused by the air molecules which push against the body as it falls through them. This is actually a significant amount of force which slows down the rate of fall of the body. Drag depends on the contact surface area and weight. More the surface area in contact, more would be the drag. The sitting position of the skydiver would experience less drag than the chest down position because of the less contact surface area of the body with the air molecules while in the former case. No two persons have identical body shape and weight. Hence, the rate of fall can be made nearly equal but not exactly equal. This is would be possible when they are having same body position.
Answer:
Gases
Explanation:
The molecules in a gas are spaced very far apart.
Answer:
a) 2.4 mm
b) 1.2 mm
c) 1.2 mm
Explanation:
To find the widths of the maxima you use the diffraction condition for destructive interference, given by the following formula:

a: width of the slit
λ: wavelength
m: order of the minimum
for little angles you have:

y: height of the mth minimum
a) the width of the central maximum is 2*y for m=1:

b) the width of first maximum is y2-y1:
![w=y_2-y_1=\frac{(500*10^{-9}m)(1.2m)}{0.50*10^{-3}m}[2-1]=1.2mm](https://tex.z-dn.net/?f=w%3Dy_2-y_1%3D%5Cfrac%7B%28500%2A10%5E%7B-9%7Dm%29%281.2m%29%7D%7B0.50%2A10%5E%7B-3%7Dm%7D%5B2-1%5D%3D1.2mm)
c) and for the second maximum:
![w=y_3-y_2=\frac{(500*10^{-9}m)(1.2m)}{0.50*10^{-3}m}[3-2]=1.2mm](https://tex.z-dn.net/?f=w%3Dy_3-y_2%3D%5Cfrac%7B%28500%2A10%5E%7B-9%7Dm%29%281.2m%29%7D%7B0.50%2A10%5E%7B-3%7Dm%7D%5B3-2%5D%3D1.2mm)