Answer:
conductivity of solution is reduced.
Explanation:
When two oppositely charged electrodes are immersed in a solution, positively charged ions are attracted to the negative electrode and gain electrons. The negatively charged ions are attracted to the positive electrode and release electrons.
Due to the process mentioned above , the negatively charged ions are accumulated at the positive electrode and the positively charged ions are accumulated at the negative electrode . This accumulation prevents further attraction of ions at oppositely charged electrodes because the incoming ions face repulsion from already accumulated ions at electrodes. Further , it creates an emf acting in opposite direction . It reduces the current through the solution. Hence conductivity of solution is reduced.
Pushing, pulling is the answer
The correct answer that would best complete the given statement above would be the last option: COLDER. Climates on Earth get colder <span>as you move from the equator to the poles. The places that are located near or on the equator experience the warmest or the hottest climates such as Africa. Hope this answer helps. </span>
Answer:
In an elastic collision, the momentum is conserved and the mechanical energy is conserved too.
Explanation:
There are two types of collisions:
- Elastic collision: in an elastic collision, the total momentum before and after the collision is conserved; also, the total mechanical energy before and after the collision is conserved.
- Inelastic collision: in an inelastic collision, the total momentum before and after the colllision is conserved, while the total mechanical energy is not conserved (in fact, part of the energy is converted into other forms of energy such that thermal energy, due to the presence of frictional forces)
Ohm's Law tells the relationship between voltage, current, and resistance.
It can be written in three different ways, depending on which ones you know,
and which one you want to find.
Here's the one we need:
Resistance = (voltage) divided by (current)
= (120 V) / (0.5 Amp)
= 240 ohms .