Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s
The atomic number of an element is the number of protons the element has, so the element with the atomic number 55 has 55 protons.
Answer:
x = 25 / μ [ ft]
Explanation:
To solve this exercise we can use Newton's second law.
Let's set a reference system where the x axis is parallel to the road
Y axis
N_B + N_A - W_van - W_load = 0
N_B + N_A = W_van + W_load
X axis
fr = ma
a = fr / m
the total mass is
m = (W_van + W_load) / g
the friction force has the expression
fr = μ N_{total}
fr = μy (W_van + W_load)
we substitute
a = μ (W_van + W_load)
a = μ g
taking the acceleration let's use the kinematic relations where the final velocity is zero
v² = v₀² - 2 a x
0 = v₀² -2a x
x =
x =
x =
x = 25 / μ [ ft]
Answer:
Each part so obtained will represent the fraction 1/8 and the number line obtained will be of the form: To mark 3/8; move three parts on the right-side of zero. To mark 5/8; move five parts on the right-side of zero. To mark -1 3/8 i.e. -11/8; move eleven parts on the left-side of zero.
Explanation: