Answer:
2C4H10 + 13O2 ----> 4CO2 + 10H2O
The coefficient of oxygen in the balanced equation is 13
Answer:
Ok so, b. A redox reaction occurs in an electrochemical cell, where silver (Ag) is oxidized and nickel (Ni) is reduced - In voltaic cells, also called galvanic cells, oxidation occurs at the anode and reduction occurs at the cathode. A mnemonic for this is "An Ox. Red Cat." So since silver is oxidized, the silver half-cell is the anode. And the nickel half-cell is the cathode...
i. Write the half-reactions for this reaction, indicating the oxidation half-reaction and the reduction half-reaction- The substance having highest positive  potential will always get reduced and will undergo reduction reaction. Here, zinc will always undergo reduction reaction will get reduced
ii. Which metal is the anode, and which is the cathode?-The anode is where the oxidation reaction takes place. In other words, this is where the metal loses electrons. The cathode is where the reduction reaction takes place.
iii. Calculate the standard potential (voltage) of the cell
Look up the reduction potential,
E
⁰
red
, for the reduction half-reaction in a table of reduction potentials
Look up the reduction potential for the reverse of the oxidation half-reaction and reverse the sign to obtain the oxidation potential. For the oxidation half-reaction,
E
⁰
ox
=
-
E
⁰
red
.
iv. What kind of electrochemical cell is this? Explain your answer.
All parts in the electrochemical cells are labeled in second figure. Following are the part in electrochemical cells
1) Anode 2) Cathode 3) gold Stripe (Electrode) 4) Aluminium Glasses (Electrode) 5) Connecting wires 6) Battery
Explanation:
Answer:
Here are five important characteristics: wavelength, amplitude, frequency, time period, and velocity. The wavelength of a sound wave can tell the distance that wave travels before it repeats itself. The wavelength itself is a longitudinal wave that show compression and rarefactions of sound waves.
Explanation:
Hope this helped please pick me brainliest
Answer:
Removing O₂, means removing one of the reactants and the system would counteract this effect by producing more O₂, thereby shifting the equilibrium position to the left and favouring the backward reaction.
Explanation:
The principle that explains how changes in temperature, Concentration and Pressure of reactants or products of a reaction at equilibrium affect the equilibrium position of the reaction is the Le Chatelier's principle.
The Principle explains that a system/process if a system/process which is at equilibrium is disturbed/perturbed/constrained by one or more changes (in concentration, pressure or temperature), the system would shift the equilibrium position to counteract the effects of this change.
Removing O₂, means removing one of the reactants (changing its concentration) and the system would counteract this effect by producing more O₂, thereby shifting the equilibrium position to the left and favouring the backward reaction.