Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R
Answer:
1.2 amps :)
Explanation:
A heater has a resistance of 10.0 Ω. It operates on a 12.0 V. What is the current through the resistor?
Known:
Unknown:
I = V/R
= 12.0 V / 10.0 Ω
= 1.2 amps
Answer:
The angular acceleration α = 14.7 rad/s²
Explanation:
The torque on the rod τ = Iα where I = moment of inertia of rod = mL²/12 where m =mass of rod and L = length of rod = 4.00 m. α = angular acceleration of rod
Also, τ = Wr where W = weight of rod = mg and r = center of mass of rod = L/2.
So Iα = Wr
Substituting the value of the variables, we have
mL²α/12 = mgL/2
Simplifying by dividing through by mL, we have
mL²α/12mL = mgL/2mL
Lα/12 = g/2
multiplying both sides by 12, we have
Lα/12 × 12 = g/2 × 12
αL = 6g
α = 6g/L
α = 6 × 9.8 m/s² ÷ 4.00 m
α = 58.8 m/s² ÷ 4.00 m
α = 14.7 rad/s²
So, the angular acceleration α = 14.7 rad/s²
We know that
g = LcosΘ
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.