Answer:
The current flowing through the outer coils is
Explanation:
From the question we are told that
The number of turn of inner coil is
The radius of inner coil is
The current flowing through the inner coil is
The number of turn of outer coil is
The radius of outer coil is
For net magnetic field at the common center of the two coils to be zero the current flowing in the outer coil must be opposite to current flowing inner coil
The magnetic field due to inner coils is mathematically represented as
The magnetic field due to inner coils is mathematically represented as
Now for magnetic field at center to be zero
So
=>
Answer:
a) -1.25 m/s²
b) 62.5 m
Explanation:
Convert km/h to m/s:
45 km/h × (1000 m/km) × (1 h / 3600 s) = 12.5 m/s
a = Δv / Δt
a = (0 m/s − 12.5 m/s) / 10 s
a = -1.25 m/s²
Δx = ½ (v + v₀) t
Δx = ½ (0 m/s + 12.5 m/s) (10 s)
Δx = 62.5 m
i hate this question.
Conservation of momentum - is when the total momentum before and after collision is equal.
Here is the formula darling,
p = p
mv = mv
See the pic for example. HmpH
Answer:
82.25 moles of He
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 10 L
Mass of He = 0.329 Kg
Temperature (T) = 28.0 °C
Molar mass of He = 4 g/mol
Mole of He =?
Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:
1 Kg = 1000 g
Therefore,
0.329 Kg = 0.329 Kg × 1000 g / 1 Kg
0.329 Kg = 329 g
Thus, 0.329 Kg is equivalent to 329 g.
Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:
Mass of He = 329 g
Molar mass of He = 4 g/mol
Mole of He =?
Mole = mass / molar mass
Mole of He = 329 / 4
Mole of He = 82.25 moles
Therefore, there are 82.25 moles of He in the tank.