Answer:
1. telescope
2.

f- focal length
f- focal length r- the radius of curvature of the mirror

p-the distance of the object from the vertex of the mirror
l-the distance of the figure from the vertex of the mirror
Answer:
496.7 K
Explanation:
The efficiency of a Carnot engine is given by the equation:

where:
is the temperature of the hot reservoir
is the temperature of the cold reservoir
For the engine in the problem, we know that
is the efficiency
is the temperature of the cold reservoir
Solving for
, we find:

Red is refracted the least and violet is refracted the most
Answer:
Solution is in explanation
Explanation:
part a)
For normalization we have
![\int_{0}^{\infty }f(x)dx=1\\\\\therefore \int_{0}^{\infty }ae^{-kx}dx=1\\\\\Rightarrow a\int_{0}^{\infty }e^{-kx}dx=1\\\\\frac{a}{-k}[\frac{1}{e^{kx}}]_{0}^{\infty }=1\\\\\frac{a}{-k}[0-1]=1\\\\\therefore a=k](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Df%28x%29dx%3D1%5C%5C%5C%5C%5Ctherefore%20%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dae%5E%7B-kx%7Ddx%3D1%5C%5C%5C%5C%5CRightarrow%20a%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-kx%7Ddx%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7B-k%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bkx%7D%7D%5D_%7B0%7D%5E%7B%5Cinfty%20%7D%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7B-k%7D%5B0-1%5D%3D1%5C%5C%5C%5C%5Ctherefore%20a%3Dk)
Part b)
![\int_{0}^{L }f(x)dx=1\\\\\therefore Re(\int_{0}^{L }ae^{-ikx}dx)=1\\\\\Rightarrow Re(a\int_{0}^{L }e^{-ikx}dx)=1\\\\\therefore Re(\frac{a}{-ik}[\frac{1}{e^{ikx}}]_{0}^{L})=1\\\\\Rightarrow Re(\frac{a}{-ik}(e^{-ikL}-1))=1\\\\\frac{a}{k}Re(\frac{1}{-i}(cos(-kL)+isin(-kL)-1))=1](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7BL%20%7Df%28x%29dx%3D1%5C%5C%5C%5C%5Ctherefore%20Re%28%5Cint_%7B0%7D%5E%7BL%20%7Dae%5E%7B-ikx%7Ddx%29%3D1%5C%5C%5C%5C%5CRightarrow%20Re%28a%5Cint_%7B0%7D%5E%7BL%20%7De%5E%7B-ikx%7Ddx%29%3D1%5C%5C%5C%5C%5Ctherefore%20Re%28%5Cfrac%7Ba%7D%7B-ik%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bikx%7D%7D%5D_%7B0%7D%5E%7BL%7D%29%3D1%5C%5C%5C%5C%5CRightarrow%20Re%28%5Cfrac%7Ba%7D%7B-ik%7D%28e%5E%7B-ikL%7D-1%29%29%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7Bk%7DRe%28%5Cfrac%7B1%7D%7B-i%7D%28cos%28-kL%29%2Bisin%28-kL%29-1%29%29%3D1)

If it takes 1 year for this crab to travel 5,70km
Then, it will takes approximatly 1000/5,70 = 175 years to travel 1000 km