Answer:
Tides on our planet are caused by the gravitational pull of the Moon and Sun. Earth's oceans "bulge out" because the Moon's gravity pulls a little harder on one side of our planet (the side closer to the Moon) than it does on the other. The Sun's gravity raises tides, too, but lunar tides are twice as big.
Answer:
v = 5.9 x 10⁷ m/s
Explanation:
The kinetic energy of the electron in terms of potential difference is given as:
--------------- equation (1)
where,
e = charge on electron = 1.6 x 10⁻¹⁹ C
V = Potential Difference = 9.9 KV = 9900 Volts
The kinetic energy in general is given as:
--------- equation (2)
where,
m = mass of electron = 9.1 x 10⁻³¹ kg
v = speed of electron = ?
Therefore, comparing equation (1) and equation (2), we get:

<u>v = 5.9 x 10⁷ m/s</u>
The quantity work has to do with a force causing a displacement. Work has nothing to do with the amount of time that this force acts to cause the displacement. Sometimes, the work is done very quickly and other times the work is done rather slowly. For example, a rock climber takes an abnormally long time to elevate her body up a few meters along the side of a cliff. On the other hand, a trail hiker (who selects the easier path up the mountain) might elevate her body a few meters in a short amount of time. The two people might do the same amount of work, yet the hiker does the work in considerably less time than the rock climber. The quantity that has to do with the rate at which a certain amount of work is done is known as the power. The hiker has a greater power rating than the rock climber.
Power is the rate at which work is done. It is the work/time ratio. Mathematically, it is computed using the following equation.
Power = Work / time
or
P = W / t
Forces affect how objects move. They may cause motion; they may also slow, stop, or change the direction of motion of an object that is already moving. Since force cause changes in the speed or direction of an object, we can say that forces cause changes in velocity. Remember that acceleration is a change in velocity.