Answer:
Explanation:
Time period is the reciprocal of frequency
T = 1/F
F = 1/T
but angular frequency w = 2πF
F = w/2π
The detailed steps is as shown in the attached file
Answer:
Final Speed of Dwayne 'The Rock' Johnson = 15.812 m/s
Explanation:
Let's start out with finding the force acting downwards because of the mass of 'The Rock':
Dwayne 'The Rock' Johnson: 118kg x 9.81m/s = 1157.58 N
Now the problem also states that the kinetic friction of the desk in this problem is 370 N
Since the pulley is smooth, the weight of Dwayne Johnson being transferred fully, and pulls the desk with a force of 1157.58 N. The frictional force of the desk is resisting this motion by a force of 370 N. Subtracting both forces we get the resultant force on the desk to be: 1157.58 - 370 = 787.58 N
Now lets use F = ma to calculate for the acceleration of the desk:
787.58 = 63 x acceleration
acceleration = 12.501 m/s
Finally, we can use the motion equation:

here u = 0 m/s (since initial speed of the desk is 0)
a = 12.501 m/s
and s = 10 m
Solving this we get:


Since the desk and Mr. Dwayne Johnson are connected by a taught rope, they are travelling at the same speed. Thus, Dwayne also travels at 15.812 m/s when the desk reaches the window.
Answer:
4.75 m/s
Explanation:
The computation of the velocity of the existing water is shown below:
Data provided in the question
Tall = 2 m
Inside diameter tank = 2m
Hole opened = 10 cm
Bottom of the tank = 0.75 m
Based on the above information, first we have to determine the height which is
= 2 - 0.75 - 0.10
= 2 - 0.85
= 1.15 m
We assume the following things
1. Compressible flow
2. Stream line followed
Now applied the Bernoulli equation to section 1 and 2
So we get

where,
P_1 = P_2 = hydrostatic
z_1 = 0
z_2 = h
Now

= 4.7476 m/sec
= 4.75 m/s
Answer:
Time taken, 
Explanation:
It is given that, a small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal circle so that the thread’s trajectory describes a cone as shown in attached figure.
From the figure,
The sum of forces in y direction is :


Sum of forces in x direction,

.............(1)
Also, 
Equation (1) becomes :

...............(2)
Let t is the time taken for the ball to rotate once around the axis. It is given by :

Put the value of T from equation (2) to the above expression:


On solving above equation :

Hence, this is the required solution.
Hello!
Answer: 7918 J
Explanation:
We are assuming that the floor (field) is completely horizontal since there's no information about that in the statement.
We are going to use the following formula:

Where:


º

Then, by substituting we have:
