Answer : The mass of a sample of water is, 888.89 grams
Explanation :
Latent heat of vaporization : It is defined as the amount of heat energy released or absorbed when the liquid converted to vapor at atmospheric pressure at its boiling point.
Formula used :

where,
q = heat = 2000 kJ =
(1 kJ = 1000 J)
L = latent heat of vaporization of water = 
m = mass of sample of water = ?
Now put all the given values in the above formula, we get:

(1 kg = 1000 g)
Therefore, the mass of a sample of water is, 888.89 grams
Answer:
See explanation below
Explanation:
If we are talking about the kinetic energy of the cylinder of oxygen:
The kinetic energy possessed by any object is given by

where
m is the mass of the object
v is its speed
In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.
Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:
The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)
Answer:
(C) deflected toward the top of the page.(
Explanation:
We can answer this problem by using Fleming's Left Hand Rule. By doing so, we have to place:
- The index finger of the left hand in the direction of the magnetic field
- The middle finger of the left hand in the direction of the particle's velocity
- The thumb will give the direction of the force, and therefore the deflection of the proton
In this problem, we have:
- Magnetic field direction: into the page --> index finger
- Proton's velocity: to the right --> middle finger
By doing so, we observe that the thumb points towards the top of the page: therefore, the correct answer is
(C) deflected toward the top of the page.
Electric field lines of positive charges are always radially outwards
So here all field lines must have tendency to move out radially as well as two field lines never intersects with each other
So here field lines also do not intersects with each other
So overall the figure C is perfectly representing the field lines of two positive charges as these lines are not intersecting and also originating from two positive charges.
So answer must be
<u><em>FIGURE C</em></u>
For a total charge of Q coulomb is uniformly distributed along a rod 40cm in length, the electric field intensity 20cm away from the rod is mathematically given as
E1=1.598*10^11v/m
<h3>What is the e
lectric field intensity 20cm away from the
rod along its perpendicular
bisector?</h3>
Generally, the equation for the initial electric field intensity is mathematically given as

Therefore

Hence

E1=B*9*10^{13})/(10*110)*
E1=1.598*10^11v/m
In conclusion, the electric field intensity
E1=1.598*10^11v/m
Read more about Electric field
brainly.com/question/9383604