Answer:
You increase the acceleration of the car.
What is the difference between<span> a</span>size declarator<span> and a </span>subscript<span>? The </span>size declarator<span> is ... When writing a function that accepts a two-dimensional </span>array<span> as an argument, which </span>size declarator<span> must you provide in the parameter </span>for<span> the</span>array<span>? The second size ...</span>
Answer:
B) how steep the slope is
Explanation:
Because you have to know how is the influence of the steep of the slope in the time that a ball reaches the bottom. The steep of the slope is the variable that you would have to change in an experiment.
I hope this is useful for you
regards
7.5 x 10⁻¹¹m. An electromagnetic wave of frecuency 4.0 x 10¹⁸Hz has a wavelength of 7.5 x 10⁻¹¹m.
Wavelength is the distance traveled by a periodic disturbance that propagates through a medium in a certain time interval. The wavelength, also known as the space period, is the inverse of the frequency. The wavelength is usually represented by the Greek letter λ.
λ = v/f. Where v is the speed of propagation of the wave, and "f" is the frequency.
An electromagnetic wave has a frecuency of 4.0 x 10 ¹⁸Hz and the speed of light is 3.0 x 10⁸ m/s. So:
λ = (3.0 x 10⁸ m/s)/(4.0 x 10¹⁸ Hz)
λ = 7.5 x 10⁻¹¹m
Answer:
17.565 kgm/s
Explanation:
Momentum = mass × velocity
I = mv..................... Equation 1
But we can calculate the value of v using the equation of motion under gravity.
v² = u²+2gs............. Equation 2
Where u = initial velocity, s = maximum heigth, g = acceleration due to gravity.
Given: u = 0 m/s (at the maximum heigth), s = 7.0 m.
Constant: g = 9.8 m/s²
Substitute these values into equation 2
v² = 0²+ 2×7×9.8
v² = 137.2
v = √137.2
v = 11.71 m/s.
Also given: m = 1.50 kg
substitute these values into equation 1
Therefore,
I = 1.5×11.71
I = 17.565 kgm/s