In this reaction 50% of the compound decompose in 10.5 min thus, it is half life of the reaction and denoted by symbol
.
(a) For first order reaction, rate constant and half life time are related to each other as follows:

Thus, rate constant of the reaction is
.
(b) Rate equation for first order reaction is as follows:
![k=\frac{2.303}{t_{1/2}}log\frac{[A_{0}]}{[A_{t}]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt_%7B1%2F2%7D%7Dlog%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D)
now, 75% of the compound is decomposed, if initial concentration
is 100 then concentration at time t
will be 100-75=25.
Putting the values,

On rearranging,

Thus, time required for 75% decomposition is 21 min.
Start with Unbalanced Equation and balance it, so...
C7H16+O2--->CO2+H2O
There are 7 C atoms on the left-hand side, so we need 7 C atoms on the right-hand side. Add a 7 in front of the CO2...7CO2+H2O on right side now.
We have fixed 16 H atoms on the left-hand side, so we need 16 H atoms on the right-hand side. Add an 8 in front of H2O to make 16 (8x2)...7CO2+8H2O on right side now.
There are 22 O atoms on the right-hand side: 14 from the CO2 and 8 from the H2O. Add an 11 in front of the O2 on the left side to make 22 (11x2).
Every formula now has a fixed coefficient. You should have a balanced equation of...
C7H16+11O2--->7CO2+8H2O
Democritus was the first person to theorize the existence of atoms.
Answer:
C po
Explanation:
baka po pero pwd din ang B pero ok ang C
The atomic mass of an element on the periodic table is the weight of 1 mole of atoms. For example, the atomic mass of Fe is 55.8 on the periodic table. If you weigh out 55.8 grams of Fe you will have 1 mole of iron, or 6.02 x 1023 atoms.