-- You and your partner both get the same job to do:
Each of you gets a pallet of bricks, and you have to
put the bricks up on the bed of a truck, by hand.
Both pallets have the same number of bricks.
The pallet is way too heavy to lift, so you both cut the bands
that hold the bricks, and you lift the bricks from the pallet onto
the truck, by hand, two or three or four bricks at a time.
-- You get your pallet of bricks onto the truck in 45 minutes.
-- Your partner gets his pallet of bricks onto the truck in 3 days.
-- Work = (force) times (distance).
You and your partner both lifted the same amount of weight
up to the same height. You both did the same amount of work.
-- Power = (work done) divided by (time it takes to do the work) .
Your partner took roughly 96 times as long as you took
to do the same amount of work.
You did it faster. He did it slower.
You produced more power. He produced less power.
For the answer to the question above, i<span>n </span>direct current<span> (</span>DC<span>), the </span>electric charge<span> (</span>current)only flows<span> in one direction. </span>Electric charge<span> in alternating </span>current<span> (AC), on the other hand, changes direction periodically. The voltage in AC circuits also periodically reverses because the </span>current<span> changes direction. So my answer is A.</span>
The wave characteristic that is the same for both waves is wavelength.
- Two waves with the same frequency will also have the same wavelength, amplitude, speed, and period. When two waves are travelling at the same frequency, it denotes that their duration and amplitude are also the same.
- When two waves of the same frequency and amplitude interfere constructively, their peaks and troughs align as shown in diagram A above. As a result, the original waves' amplitude is doubled, resulting in a sound wave that is twice as loud.
Thus, Equal frequencies are shared by two waves moving through the same region in the same direction.
To know more about wave
brainly.com/question/17076990
#SPJ4
Answer:through a small space through atoms
Explanation:
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s