Answer:
The speed of the ball was, v = 3 m/s
Explanation:
Given data,
The time period of the ball, t = 8 s
The distance the ball rolled, d = 24 m
The velocity of an object is defined as the object's displacement to the time taken. The formula for the velocity is,
v = d / t m/s
Substituting the given values in the above equation,
v = 24 / 8
= 3 m/s
Hence, the speed of the ball was, v = 3 m/s
<span>b. less climatic variation between the summer and winter seasons in the middle and high latitudes
As the tilt becomes higher (approaches 24 degrees) there is greater variation between the summer and winter months, due to the fact that the tilt toward the sun in the summer and away from the sun in the winter are more pronounced. </span>
To prevent the crate from slipping, the maximum force that the belt can exert on the crate must be equal to the static friction force.
Ff = 0.5 * 16 * 9.8 = 78.4 N
a = 4.9 m/s^2
If acceleration of the belt exceeds the value determined in the previous question, what is the acceleration of the crate?
In this situation, the kinetic friction force is causing the crate to decelerate. So the net force on the crate is 78.4 N minus the kinetic friction force.
Ff = 0.28 * 16 * 9.8 = 43.904 N
Net force = 78.4 – 43.904 = 34.496 N
To determine the acceleration, divide by the mass of the crate.
a = 34.496 ÷ 16 = 2.156 m/s^2