Solar Nebula
Our solar system began forming within a concentration of interstellar dust and hydrogen gas called a molecular cloud. The cloud contracted under its own gravity and our proto-Sun formed in the hot dense center. The remainder of the cloud formed a swirling disk called of the solar nebula.
Answer:
See below explanation
Explanation:
The correspondent chemical reaction for copper carbonate decomposed by heat is:
CuCO₃ (s) → CuO (s) + CO₂ (g)
Considering all molar mass (MM) for each element ( we consider rounded numbers) :
MM CuCO₃ = 123 g/mol
MM CuO = 79 g/mol
MM CO₂ = 44 g/mol
Statement mentions that scientis heated 123.6 g of CuCO₃ (almost a MM), until a black residue is obtained, which weights 79.6 g : this solid residue is formed by CuO, and the remaining mass (approximatelly 44 g) belongs to teh second product, this is, CO₂; as it is a gas compund, it is not certainly included on the solid residue.
So, law of conservation mass is true for this case, since: 123.6 g = 79.6 g + 44 g. As explained, on the solid residue, we don not include the 44 g, which "escaped" from our system, since it is a gas compound (CO₂)
Answer:

Work done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners of an equilateral triangle) is 
Explanation:
The potential energy is given by:
U=Q*V
where:
Q is the charge
V is the potential difference
Potential Difference=V=
So,

Where:
k is Coulomb Constant=
q is the charge on electron=
r is the distance=
For 3 Electrons Potential Energy or work Done is:


Work done to bring three electrons from a great distance apart to 3.0×10−10 m from one another (at the corners of an equilateral triangle) is 
Answer:
D. the masses of the objects and the distance between them
Explanation:
Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.
And you can get it using the following equation:

Where :
G is the universal gravitational constant
: G = 6.6726 x 10-11N-m2/kg2
m represent the mass of each of the two objects
d is the distance between the centers of the objects.