Answer:

Explanation:
Hello.
In this case, given the heat of fusion of THF to be 8.5 kJ/mol and freezing at -108.5 °C, for the required mass of 5.9 g, we can compute the entropy as:

Whereas n accounts for the moles which are computed below:

Thus, the entropy turns out:

Best regards.
Use the formula for second order reaction:

C = concentration at time t
C0 = initial conc.
k = rate constant
t = time
1st equation :

2nd Equation:

Find

from 1st equation and put it in 2nd equation:


k = 0.046
Given the number of a substance, we can solve the number of moles by using a conversion factor that would relate the number of a substance to the number of moles. In any case, Avogadro's number would be used. It <span>represents the number of
units in one mole of any substance. This has the value of 6.022 x 10^23 units /
mole. This number can be used to convert the number of atoms or molecules into
number of moles. For example, we are given 1.23 x 10^24 atoms of a substance converting it to moles we do as follows:
</span>1.23 x 10^24 atoms ( 1 mol / 6.022x10^23 atoms ) = 2.04 moles