Answer:
31.31× 10²³ number of Cl⁻ are present in 2.6 moles of CaCl₂ .
Explanation:
Given data:
Number of moles of CaCl₂ = 2.6 mol
Number of Cl₂ ions = ?
Solution:
CaCl₂ → Ca²⁺ + 2Cl⁻
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
In one mole of CaCl₂ there are two moles of chloride ions present.
In 2.6 mol:
2.6×2 = 5.2 moles
1 mole Cl⁻ = 6.022 × 10²³ number of Cl⁻ ions
5.2 mol × 6.022 × 10²³ number of Cl⁻ / 1mol
31.31× 10²³ number of Cl⁻
Answer:
Volume of carbon dioxide is 428.23 L.
Explanation:
Below is the chemical reaction or chemical equation for the combustion of hydrocarbons such as undecane into carbon dioxide.

Here, undecane is in liquid form that reacts with gaseous oxygen (combustion) and produces carbon dioxide and water as a product in the gaseous form.
The molar mass of undecane = 

From the equation, it can be seen that 1 mole of undecane produces 11 moles of carbon dioxide. Therefore, 1.66 mol will produce 18.26 mol of carbon dioxide.
Now find the volume of 18.26 mol of carbon dioxide when the temperature is 13 degrees Celsius and pressure is 1 atm.



Answer:
The concentration of the solution will be much lower than 6M
Explanation:
To prepare a solution of a solid, the appropriate mass is taken and accurately weighed in a weighing balance and then made up to mark with distilled water.
From
n= CV
n = number of moles m/M( m= mass of solid, M= molar mass of compound)
C= concentration of substance
V= volume of solution
m=120g
M= 40gmol-1
V=500ml
120/40= C×500/1000
C= 120/40× 1000/500
C=6M
This solution will not be exactly 6M if the student follows the procedure outlined in the question. The actual concentration will be much less than 6M.
This is because, solutions are prepared in a standard volumetric flask. Using a 1000ml beaker, the student must have added more water than the required 500ml thereby making the actual concentration of the solution less than the expected 6M.