Answer:
<em>»</em><em> </em><em>λ </em><em>=</em><em> </em><em>0</em><em>.</em><em>0</em><em>2</em><em>m</em>
Explanation:
Given :
Velocity of the wave {v}= 12 m/s
Frequency {f} = 600 Hz
Apply Wavelength formula :
• 
→ λ = 
→ λ = 
→ λ = 0.02m
We have to get the relationship between metallic character and atomic radius.
Metallic character increases with increase in atomic radius and decrease with decrease of atomic radius.
If electrons from outermost shell of an element can be removed easily, that atom can be considered to have more metallic character.
With increase in atomic radius, nuclear force of attraction towards outermost shell electron decreases which facilitates the release of electron.
With decrease in atomic radius, nuclear force of attraction towards outermost shell electrons increases, so electrons are hold tightly to nucleus. Hence, removal of electron from outermost shell becomes difficult making the atom less metallic in nature.
Answer:
1.8 x 1024 atoms in a mole of water.
Explanation:
1 mole of platinum has a mass of 195 g therefore 1 atom will have a mass of 195 g /(6.02 ×10^23) = 3.239 × 10^-22 g
Density is given by dividing mass by volume, thus to get volume, mass is divided by density.
The volume = (3.239 × 10^-22)/21.4
= 1.514 × 10^-23 cm³
But volume of a sphere is given by 4/3πr³
Therefore, r³ = 3.6129 × 10^-24
r = ∛(3.6129 × 10^-24)
= 1.534 × 10^ -8 cm
Therefore, the radius of the platinum atom is 1.534 × 10^-8 cm
Galileo disproved the Ptolemaic theory, sanctioned for centuries by the Church, which held the Earth to be the central and principal object in the universe, about which all celestial objects orbited.