If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. We can calculate the concentration of CO₂ using Henry's law.

We can calculate the mass of CO₂ in 1.1 L considering its molar mass is 44.01 g/mol.

Now, we will repeat the same procedure for a partial pressure of 1.28 atm.


The mass of CO₂ released will be equal to the difference in the masses at the different pressures.

If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
Learn more: brainly.com/question/18987224
<em>The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. How much CO₂ gas (in g) will be released from 1.1 L of the carbonated water when the partial pressure of CO2 is lowered to 1.28 atm? At 25 ºC, the Henry’s law constant for CO₂ dissolved in water is 1.65 x 10⁻³ M/atm, and the density of water is 1.0 g/cm³.</em>
Answer:
The answer to your question is below
Explanation:
a) HCl 0.01 M
pH = -log [0.01]
pH = - (-2)
pH = 2
b) HCl = 0.001 M
pH = -log[0.001]
pH = -(-3)
pH = 3
c) HCl = 0.00001 M
pH = -log[0.00001]
pH = - (-5)
pH = 5
d) Distilled water
pH = 7.0
e) NaOH = 0.00001 M
pOH = -log [0.00001]
pOH = -(-5)
pH = 14 - 5
pH = 9
f) NaOH = 0.001 M
pOH =- log [0.001]
pOH = 3
pH = 14 - 3
pH = 11
g) NaOH = 0.1 M
pOH = -log[0.1]
pOH = 1
pH = 14 - 1
pH = 13