Hey there! :D
To some extent, all moving parts produce friction. It can be very small or minimal, but all parts produce some form of friction.
This is true.
I hope this helps!
~kaikers
Molality= mol/ Kg
if we assume that we have 1 kg of water, we have 3.19 moles of solute.
the formula for mole fraction --> mole fraction= mol of solule/ mol of solution
1) if we have 1 kg of water which is same as 1000 grams of water.
2) we need to convert grams to moles using the molar mass of water
molar mass of H₂O= (2 x 1.01) + 16.0 = 18.02 g/mol
1000 g (1 mol/ 18.02 grams)= 55.5 mol
3) mole of solution= 55.5 moles + 3.19 moles= 58.7 moles of solution
4) mole fraction= 3.19 / 58.7= 0.0543
Answer:
The answer is 18.12KJ is required to vaporise 48.7 g of dichloromethane at its boiling point
Explanation:
To solve the above question we have the given variable as follows
ΔHvap = heat of vaporisation of dichloromethane per mole = 31.6KJ/mole
However since the heat of vaporisation is the heat to vaporise one mole of dichloromethane, then, for 48.7 grams of dichloromethane, we have.
The number of moles of dichloromethane present = 48.7/84.93 = 0.573 moles
Therefore, the amount of heat required to vaporise 48.7 grams of dichloromethane at its boiling point is 31.6KJ/mole×0.573moles =18.12KJ
Answer:
Because of its weak intermolecular forces.
Explanation:
Hello there!
In this case, according to the given description, it turns out possible for us to recall the chemical structures of both ethanol and dimethyl ether as follows:

Thus, we can see that ethanol have London dispersion forces (C-C bonds), dipole-dipole forces (C-O bonds) and also hydrogen bonds (O-H bonds) which make ethanol a liquid due to the strong hydrogen bonds. On the other hand, we can see that dimethyl ether has just London and dipole forces, which are by far weaker than hydrogen bonding, that makes it unstable when liquid and therefore it tends to vaporize quite readily.
Regards!