Explanation:
He would work on the thing like in the method you work on your question.
Answer:
diameter of the sprue at the bottom is 1.603 cm
Explanation:
Given data;
Flow rate, Q = 400 cm³/s
cross section of sprue: Round
Diameter of sprue at the top
= 3.4 cm
Height of sprue, h = 20 cm = 0.2 m
acceleration due to gravity g = 9.81 m/s²
Calculate the velocity at the sprue base
= √2gh
we substitute
= √(2 × 9.81 m/s² × 0.2 m )
= 1.98091 m/s
= 198.091 cm/s
diameter of the sprue at the bottom will be;
Q = AV = (π
/4) × 
= √(4Q/π
)
we substitute our values into the equation;
= √(4(400 cm³/s) / (π×198.091 cm/s))
= 1.603 cm
Therefore, diameter of the sprue at the bottom is 1.603 cm
Answer:
Massive destruction
Explanation:
If the asteroid collides with the ground, a massive volume of dust will be blasted into the environment. If it collides with water, the amount of water vapour in the atmosphere will rise. This would result in more rain, which would cause earthquakes and mudslides.
As the asteroid collided with the Earth, massive volumes of dust were ejected into to the atmosphere. The sun's light were stopped from entering the Earth's surface, which is terrible news for plants.