Answer:
1028.1184 Ohms
Explanation:
<u>Given the following data;</u>
- Initial resistance, Ro = 976 Ohms
- Initial temperature, T1 = 0°C
- Final temperature, T2 = 89°C
Assuming the temperature coefficient of resistance for carbon at 0°C is equal to 0.0006 per degree Celsius.
To find determine its new resistance, we would use the mathematical expression for linear resistivity;

Substituting into the equation, we have;




Explanation:
The obtained data from water properties tables are:
Point 1 (condenser exit) @ 8 KPa, saturated fluid

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

Calculate mass flow rates
Part a) @ 18 MPa
mass flow

Heat transfer rate through boiler

Heat transfer rate through condenser

Thermal Efficiency

Part b) @ 4 MPa
mass flow

Heat transfer rate through boiler

Heat transfer rate through condenser

Thermal Efficiency

Answer:
A concrete masonry unit (CMU) is a standard-size rectangular block used in building construction. ... Those that use cinders (fly ash or bottom ash) as an aggregate material are called cinder blocks in the United States, breeze blocks (breeze is a synonym of ash) in the United Kingdom, and hollow blocks in the Philippines.
Explanation:
The approximate average power output is mathematically given as
P=1097.6w
<h3>
What is the approximate average power output?</h3>
Question Parameters:
Iowa with a 10 m2 swept area and 50 m hub height
Assume 80% of the Betz limit, 80% conversion efficiency, and air density of 1.0 kg/m3. Wind speed is 7 m/s2
Generally, the equation for the average output power is mathematically given as

Where
B= Benz coefficient
n=0.8
Therefore
P=0.5*1*0.8*10*7^3*0.8
P=1097.6w
For more information on Power
brainly.com/question/10203153
Complete Question
What is the approximate average power output of a well-designed modern turbine in Des Moines, Iowa with a 10 m2 swept area and 50 m hub height? Assume 80% of the Betz limit, 80% conversion efficiency, and air density of 1.0 kg/m3. Wind speed is 7 m/s2
Explanation:
dnndndndndndndndndnndmfnfnf