Interesting problem. Thanks for posting.
C2H2 + (3/2)02 ====> H2O + 2CO2
CH4 + 2O2 =====> 2H2O + CO2
The molar mass of C2H2 = 2*12 + 2*1 = 26
The molar mass of CH4 = 1*12 + 4*1 = 16
The number of moles of C2H2 = x
The number of moles of CH4 = y
26x + 16y = 230.9 grams
For water we get (from the C2H2). Water has a molar mass of 2*1 + 16 = 18
x*18 See the balanced equation to see what it is the same number of moles as C2H2
From the methane we get
y*18
2*y* 18. Again see the balanced equation to see where that 2 came from.
18x + 36y is the total amount of water.
Now for the CO2. CO2 has a molar mass of 12 + 2*16 = 44
From C2H2 we get 2*44*x = 88x grams of CO2
From CH4 we get 1*y*44 grams of CO2
88x + 44y for CO2
Now we total to get the grand total of water and CO2
18x + 44y + 88x + 44y = 972.7 grams total.
106x + 88y = 972.7
Two equations, two unknowns, we should be able to solve this problem
26x + 16y = 230.9
106x + 88y = 972.7
I'm not going to go through the math unless you request me to do so.
x = 8.03 moles
y = 1.38 moles
The initial amount of C2H2 was 8.03 * 26 = 208.78
The initial amount of CH4 was 16*1.38 = 22.08
The total (as a check is 230.86 which is pretty close to the given amount.
So Methane's mass in the initial givens was 22.08 grams.
Flerovium at its ground state is solid. It has electron configuration of [Rn]5f¹⁴6d¹⁰7s²7p². The expected number of valence electrons in a flerovium atom is 2. A ground state is the most stable state of an atom at satndard temperature and pressure.
Answer:
Explanation:
Electron gain enthalpy is defined as energy released on addition of electron to an isolated gaseous atom.
The amount of energy released will be maximum when the tendency to attract electrons is maximum. As flourine has atomic number of 9 and has electronic configuration of 2,7. It can readily gain 1 electron to attain stable noble gas configuration and hence liberates maximum energy.
Answer:
The boiling point is 308.27 K (35.27°C)
Explanation:
The chemical reaction for the boiling of titanium tetrachloride is shown below:
Ti ⇒ Ti
ΔH° (Ti) = -804.2 kJ/mol
ΔH° (Ti) = -763.2 kJ/mol
Therefore,
ΔH° = ΔH° (Ti) - ΔH° (Ti) = -763.2 - (-804.2) = 41 kJ/mol = 41000 J/mol
Similarly,
s°(Ti) = 221.9 J/(mol*K)
s°(Ti) = 354.9 J/(mol*K)
Therefore,
s° = s° (Ti) - s°(Ti) = 354.9 - 221.9 = 133 J/(mol*K)
Thus, T = ΔH° /s° = [41000 J/mol]/[133 J/(mol*K)] = 308. 27 K or 35.27°C
Therefore, the boiling point of titanium tetrachloride is 308.27 K or 35.27°C.