Answer:
A. Distance over which the force is applied
Explanation:
As we know that in pulley system the mass of the car is balanced by the tension in the string
so here we will have

so here in order to decrease the force needed to lift the car we have to increase Distance over which the force is applied
So here if we increase the distance over which force is applied then it will reduce the effort applied by us in this pulley system as the torque will be more if the distance is more.
Answer:
The radius of the disc is 2.098 m.
(e) is correct option.
Explanation:
Given that,
Moment of inertia I = 12100 kg-m²
Mass of disc m = 5500 kg
Moment of inertia :
The moment of inertia is equal to the product of the mass and square of the radius.
The moment of inertia of the disc is given by

Where, m = mass of disc
r = radius of the disc
Put the value into the formula



Hence, The radius of the disc is 2.098 m.
Answer:
taking a shower brushing your teeth and washing your hands
Explanation:
Answer:
a = 3.125 [m/s^2]
Explanation:
In order to solve this problem, we must use the following equation of kinematics. But first, we have to convert the speed of 90 [km/h] to meters per second.


where:
Vf = final velocity = 25 [m/s]
Vi = initial velocity = 0
a = acceleration [m/s^2]
t = time = 8 [s]
The initial speed is zero as the bus starts to koverse from rest. The positive sign of the equation means that the bus increases its speed.
25 = 0 + a*8
a = 3.125 [m/s^2]
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.