Answer
given,
change in enthalpy = 51 kJ/mole
change in activation energy = 109 kJ/mole
when a reaction is catalysed change in enthalpy between the product and the reactant does not change it remain constant.
where as activation energy of the product and the reactant decreases.
example:
ΔH = 51 kJ/mole
E_a= 83 kJ/mole
here activation energy decrease whereas change in enthalpy remains same.
Answer:
299,792,458 m/s = speed of light
Explanation:
Answer: 2. Solution A attains a higher temperature.
Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.
In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.
Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.
<em>We have a formula for such condition,</em>
.....................................(1)
where:
= temperature difference
- c= specific heat of the body
<u>Proving mathematically:</u>
<em>According to the given conditions</em>
- we have equal masses of two solutions A & B, i.e.

- equal heat is supplied to both the solutions, i.e.

- specific heat of solution A,

- specific heat of solution B,

&
are the change in temperatures of the respective solutions.
Now, putting the above values


Which proves that solution A attains a higher temperature than solution B.
Answer:
60 Ohms
Explanation:
Ohms law states that the voltage in the circuit is directly proportional to the current through the circuit components and expressed as
V=IR
Where V is the voltage, I is current and R is resistance
Making R the subject of the formula then

Substituting 3.0V for V and 0.05 A for I then

Therefore, resistance is 60.0 Ohms