Answer:
a)W= - 720 J
b)ΔU= 330 J
Explanation:
Given that
P = 0.8 atm
We know that 1 atm = 100 KPa
P = 80 KPa
V₁ = 12 L = 0.012 m³ ( 1000 L = 1 m³)
V₂ = 3 L = 0.003 m³
Q= - 390 J ( heat is leaving from the system )
We know that work done by gas given as
W = P (V₂ -V₁ )
W= 80 x ( 0.003 - 0.012 ) KJ
W= - 0.72 KJ
W= - 720 J ( Negative sign indicates work done on the gas)
From first law of thermodynamics
Q = W + ΔU
ΔU=Change in the internal energy
Now by putting the values
- 390 = - 720 + ΔU
ΔU= 720 - 390 J
ΔU= 330 J
At sea level, the size amid the 2 alkanes lets for pentane to simmer at a lower temperature than hexane. Phenol has a higher boiling point due to hydrogen bonding High altitude would have the same order while low pressure only cuts the temperature at which a solvent boils. Boiling has to do with molecular size, the occurrence/nonappearance of hydrogen bonds, and other steric issues.
So the answer would be pentane high altitude, hexane high altitude, hexane sea level, hexanol sea level. In order of boil first to boil last. This is clarified because altitude has a better effect on vapor pressure (and hence boiling points) than inter-molecular forces.
No, aluminum has a density near 2.7 g/cm^3
<span>7.8 g/cm^3 is near the density of iron (or in the case of a fork, steel).
this is it
</span>
Answer:
The given circuit diagram shows parallel circuit.
Explanation:
In this circuit diagram two bulbs are connected in parallel combination because current flows from the battery gets bifurcated at the junction. Thus, two bulbs are connected in parallel combination.
This parallel combinations of bulbs then connected to the battery given in the diagram. So, the combinations of bulbs are connected in parallel combinations with the battery.
Hence, both bulbs and battery are connected in parallel combinations with each other.
The circuit diagram shown in figure is parallel.
You know you can skip those and just submit them, they don’t even check them