<span>Let's </span>assume that the gas has ideal gas behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹)
and T is temperature in Kelvin.<span>
<span>
</span>P = 60 cm Hg = 79993.4 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³
n = ?
<span>
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 25 °C = 298 K
<span>
By substitution,
</span></span>79993.4 Pa<span> x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 298 K<span>
n = 4.0359 x 10</span>⁻³ mol
<span>
Hence, moles of the gas</span> = 4.0359 x 10⁻³ mol<span>
Moles = mass / molar
mass
</span>Mass of the gas = 0.529 g
<span>Molar mass of the gas</span> = mass / number of moles<span>
= </span>0.529 g / 4.0359 x 10⁻³ mol<span>
<span> = </span>131.07 g mol</span>⁻¹<span>
Hence, the molar mass of the given gas is </span>131.07 g mol⁻¹
Answer:
Answer the last one Nuclear decay rates vary, but chemical reaction rates are constant
Explanation:
Correct me if im wrong
The heat transfer just occurred is mainly conduction.
Conduction happens when two objects are in contact with each other. In the hotter object, the molecules and/or free electrons have a higher kinetic energy, thus they'll travel and collide into other molecules, resulting in spreading the energy to the other object.
The heat transfer happens until thermal equilibrium, where both objects have the same temperature and their molecules have the same kinetic energy rate.
In addition, radiation is also happening since everything that has a higher temperature than the environment is a net emitter. They release electromagnetic waves that turn out to be radiation. These occur even without the presence of air.
Answer:
Mass = 5.56 g
Explanation:
Given data:
Mass of Cl₂ = 4.45 g
Mass of NaCl produced = ?
Solution:
Chemical equation:
2Cl₂ + 4NaOH → 3NaCl + NaClO₂ + 2H₂O
Number of moles of Cl₂:
Number of moles = mass/molar mass
Number of moles = 4.45 g/ 71 g/mol
Number of moles = 0.063 mol
Now we will compare the moles of Cl₂ with NaCl.
Cl₂ : NaCl
2 : 3
0.063 : 3/2×0.063 =0.095 mol
Mass of NaCl:
Mass = number of moles × molar mass
Mass = 0.095 mol × 58.5 g/mol
Mass = 5.56 g
12 protons
13 neutrons
12 electrons
An isotope is an atom with a different number of neutrons but same number of protons