HClO₄ + KOH → KClO₄ + H₂O
HClO₄ - perchloric acid
KOH - potassium hydroxide
Answer:
There are 77 millimoles of nitric acid present in 35.0 mL of a 2.20 M solution
Explanation:
Molarity of the solution = 2.20 M

Therefore, there are 77 millimoles of nitric acid present in 35.0 mL of a 2.20 M solution
Answer:
Option D: it's ability to lose electrons
Explanation:
Alkali metals are usually discovered in nature. They have highly reactivity at STP conditions (standard temperature and pressure conditions) and easily lose their outermost electron to form positive ions known that have a charge of +1.
Thus, what can determine the extent of reactivity of an alkali metal, is it's ability to lose electrons
Answer:
0.6749 M is the concentration of B after 50 minutes.
Explanation:
A → B
Half life of the reaction = 
Rate constant of the reaction = k
For first order reaction, half life and half life are related by:


Initial concentration of A = ![[A]_o=0.900 M](https://tex.z-dn.net/?f=%5BA%5D_o%3D0.900%20M)
Final concentration of A after 50 minutes = ![[A]=?](https://tex.z-dn.net/?f=%5BA%5D%3D%3F)
t = 50 minute
![[A]=[A]_o\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_o%5Ctimes%20e%5E%7B-kt%7D)
![[A]=0.900 M\times e^{-0.02772 min^{-1}\times 50 minutes}](https://tex.z-dn.net/?f=%5BA%5D%3D0.900%20M%5Ctimes%20e%5E%7B-0.02772%20min%5E%7B-1%7D%5Ctimes%2050%20minutes%7D)
[A] = 0.2251 M
The concentration of A after 50 minutes = 0.2251 M
The concentration of B after 50 minutes = 0.900 M - 0.2251 M = 0.6749 M
0.6749 M is the concentration of B after 50 minutes.
Answer: 1560632 joules
Explanation:
The change in thermal energy (Q) required to heat ice depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = ?
Mass of frozen water (ice) = 1kg
C = 4184 J/(kg K)
Φ = (Final temperature - Initial temperature)
= 100°C - 0°C = 100°C
Convert 100°C to Kelvin
(100°C + 273) = 373K
Then, Q = MCΦ
Q = 1kg x 4184 J/(kg K) x 373K
Q = 1560632 joules
Thus, the change in thermal energy is 1560632 joules