While the normal gas flame can
only produce a “operating” to “light blue” type of flame, the Bunsen burner can
at least yield three types of flame. Consequently, the following: <span><span />
Operating flame
– which is yellow/orange in color, near 300° C. </span>
<span><span>·
</span>
Blue flame –
can be imperceptible under normal lighting conditions, near 500° C. The typically
used laboratory type of flame.</span>
<span><span>·
</span>Roaring-blue
flame – forms a triangular shaped in the center of the flame normally light
blue in color and interestingly, it’s a sound-producing flame. Heat is near to
700° C. </span>
Imagine with this three kinds
of flame produced and a Bunsen burner creates compared to a simple normal gas
flame. In sense, the roaring-blue flame proves evident as to why Bunsen burner
is hotter hence, the amount of heat it makes (700°C) it makes.
4. it remains in its initial phase
Answer:

Explanation:
Hello there!
In this case, in agreement to the given chemical reaction, it is possible for us to calculate the mass of NH3 required to remove 57.0 g NO via the stoichiometry based off the 4:6 mole ratio between them:

Best regards!
Answer:
C. 40
Explanation:
there are 40 moles of water in a 0.250 mole. use the formula to find out
40.0 = 40.0 + 0