The answer is (4) solid to gas. The entropy is the measurement of disorder. The entropy of CO2 under different status will increase from solid to liquid to gas. So the answer is (4).
The answer is D.
The atomic number stands for the number of protons in each element. The number of protons is what is unique to each element. The number of neutrons varies; this is what isotopes are. The number of protons being the atomic number explains why the atomic number is an identifying characteristic of each element.
<h3>Answer:</h3>
2.55 × 10²² Na Atoms
<h3>Solution:</h3>
Data Given:
M.Mass of Na = 23 g.mol⁻¹
Mass of Na = 973 mg = 0.973 g
# of Na Atoms = ??
Step 1: Calculate Moles of Na as:
Moles = Mass ÷ M.Mass
Moles = 0.973 g ÷ 23 g.mol⁻¹
Moles = 0.0423 mol
Step 2: Calculate No, of Na Atoms as:
As 1 mole of sodium atoms counts 6.022 × 10²³ and equals exactly to the mass of 23 g. So, we can write,
Moles = No. of Na Atoms ÷ 6.022 × 10²³ Na Atoms.mol⁻¹
Solving for No. of Na Atoms,
No. of Na Atoms = Moles × 6.022 × 10²³ Na Atoms.mol⁻¹
No. of Na Atoms = 0.0423 mol × 6.022 × 10²³ Na Atoms.mol⁻¹
No. of Na Atoms = 2.55 × 10²² Na Atoms
<h3>Conclusion: </h3>
2.55 × 10²² sodium atoms are required to reach a total mass of 973 mg in a substance of pure sodium.
The percent yield : 79.9%
<h3>Further eplanation
</h3>
Percent yield is the comparison of the amount of product obtained from a reaction with the amount you calculated
General formula:
Percent yield = (Actual yield / theoretical yield )x 100%
An actual yield is the amount of product actually produced by the reaction. A theoretical yield is the amount of product that you calculate from the reaction equation according to the product and reactant coefficients
Reaction
Fe(s)+S(s)⇒FeS(s)
The reaction produces 6.29 g of iron(II) sulfide⇒an actual yield
The maximum amount that can be produced is 7.87 g ⇒ A theoretical yield
