Answer:
A. 420 J
Explanation:
Given the following data;
Mass = 30.45 g
Specific heat capacity = 4.18 J/g °C.
Temperature = 3.3°C
To find the quantity of heat;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
t represents the temperature.
Substituting into the equation, we have;
Q = 420.03 ≈ 420 Joules
As an airplane moves through the air, its wings cause changes in the
speed and pressure of the air moving past them. These changes result in
the upward force called lift.
The Bernoulli principle states that an increase in the speed of a fluid
occurs simultaneously with a decrease in the pressure exerted by the
fluid.
A wing is shaped and tilted so the air moving over it moves faster than
the air moving under it. As air speeds up, its pressure goes down. So
the faster-moving air above exerts less pressure on the wing than the
slower-moving air below. The result is an upward push on the wing—lift!
Answer:
Explanation:
1. False
The force you apply on crate is equal and opposite to the force that crate applies on you by Newton's third law of motion.
The force must over come the static frictional force between the crate and the floor.
2. True
The object can move along another direction than the direction of net force. For example, when a car slows down, the net force is opposite to the direction of motion.
3. True
An object moving at constant velocity has zero net force acting on it.
4. False
An object at rest has forces acting on it but the summation of all the forces is zero i.e. the net force is zero.
When sphere A and B are brought in contact and separated, charge on each sphere becomes [2x10^-6 + (-4x10^-6)]/ 2 = -1x10^-6 C.
That is, charge is equally separated and is the average of charges on both spheres. The reason behind equal charge on both spheres after separation is, when they are kept in contact, their potential difference becomes same.
There are many forms of energy, but they can all be put into two categories: kinetic and potential. Kinetic energy is motion––of waves, electrons, atoms, molecules, substances, and objects. Potential energy is stored energy and the energy of position––gravitational energy