We know there are a total of 36 marbles. We also know 24 out of 36 are black and 12 out of 36 are blue. A ratio is pretty much a division problem... The problem wants the 24 black marbles over the 12 blue marbles. So, 24/12 = 2/1. Now, what this means is that for every 2 black marbles, there is one 1 blue marble. Good luck!
a.

By Fermat's little theorem, we have


5 and 7 are both prime, so
and
. By Euler's theorem, we get


Now we can use the Chinese remainder theorem to solve for
. Start with

- Taken mod 5, the second term vanishes and
. Multiply by the inverse of 4 mod 5 (4), then by 2.

- Taken mod 7, the first term vanishes and
. Multiply by the inverse of 2 mod 7 (4), then by 6.


b.

We have
, so by Euler's theorem,

Now, raising both sides of the original congruence to the power of 6 gives

Then multiplying both sides by
gives

so that
is the inverse of 25 mod 64. To find this inverse, solve for
in
. Using the Euclidean algorithm, we have
64 = 2*25 + 14
25 = 1*14 + 11
14 = 1*11 + 3
11 = 3*3 + 2
3 = 1*2 + 1
=> 1 = 9*64 - 23*25
so that
.
So we know

Squaring both sides of this gives

and multiplying both sides by
tells us

Use the Euclidean algorithm to solve for
.
64 = 3*17 + 13
17 = 1*13 + 4
13 = 3*4 + 1
=> 1 = 4*64 - 15*17
so that
, and so 
1200/200 in a simplified form is
3/5
Answer:
Step-by-step explanation:
#4 part A= D
#4 part B = 76
Your question only states parrallelogram ABCD is shown, so I assume you only wanted those answers, GL
The correct question is
<span>In a circle with a radius of 3 ft, an arc is intercepted by a central angle of 2π/3 radians. What is the length of the arc?
we know that
in a circle
</span>2π radians -----------------> lenght of (2*π*r)
2π/3 radians--------------> X
X=[(2π/3)*(2π*r)]/[2π]=(2π/3)*r
the lenght of the arc=(2π/3)*3=2π ft
the answer is 2π ft