The density of water is 1.0 grams per milliliter then it will be sink in water
Density is a word we use to describe how much space an object or substance takes up in the volume and in relation to the amount of matter in that object or substance its mass) and another way to put it is that density is the amount of mass per unit of volume
Here given density is 1.0 grams per milliliter and it will be sink in water because the density of water in 1.0 g/ml and this object is more dense than water and the density of an object determines whether it will float or sink in another substance and an object will float if it is less dense than the liquid it is placed in and an object will sink if it is more dense than the liquid it is placed
Know more about density
brainly.com/question/18366165
#SPJ1
Answer:
2.7 °C.kg/mol
Explanation:
Step 1: Calculate the freezing point depression (ΔT)
The normal freezing point of a certain liquid X is-7.30°C and the solution freezes at -9.9°C instead. The freezing point depression is:
ΔT = -7.30 °C - (-9.9 °C) = 2.6 °C
Step 2: Calculate the molality of the solution (b)
We will use the following expression.
b = mass of solute / molar mass of solute × kilograms of solvent
b = 102. g / (162.2 g/mol) × 0.650 kg = 0.967 mol/kg
Step 3: Calculate the molal freezing point depression constant Kf of X
Freezing point depression is a colligative property. It can be calculated using the following expression.
ΔT = Kf × b
Kf = ΔT / b
Kf = 2.6 °C / (0.967 mol/kg) = 2.7 °C.kg/mol
Answer:
The mean free path = 2.16*10^-6 m
Explanation:
<u>Given:</u>
Pressure of gas P = 100 kPa
Temperature T = 300 K
collision cross section, σ = 2.0*10^-20 m2
Boltzmann constant, k = 1.38*10^-23 J/K
<u>To determine:</u>
The mean free path, λ
<u>Calculation:</u>
The mean free path is related to the collision cross section by the following equation:

where n = number density

Substituting for P, k and T in equation (2) gives:

Next, substituting for n and σ in equation (1) gives:

Radiant Energy is electromagnetic energy that travels in transverse waves. Radiant energy includes visible light, x-rays, gamma rays and radio waves. Light is one type of radiant energy. Sunshine is radiant energy, which provides the fuel and warmth that make life on Earth possible.
<span>Heat travels from the sun by a process called radiation. Radiation is the transfer of heat by electromagnetic waves. When infrared rays strike a material, the molecules in that material move faster. In addition to the sun, light bulbs, irons, and toasters radiate heat. When we feel heat around these items, however, we are feeling convection heat (warmed air molecules) rather than radiated heat since the heat waves strike and energize surrounding air molecules. </span>
<span>A light bulb changes the chemical energy of the bulb into electromagnetic radiation, or light. Which in return gets transformed into heat (have you ever touched a light bulb? ouch!). </span>
When you heat up coffee in a microwave, you are transforming electromagnetic energy into heat.http://www.svsu.edu/mathsci-center/uploa...
<span>People have started to utilize electromagnetic energy in the form of solar power, using solar panels to gather the radiant energy that comes from the sun and use it for electricity. For example, a pool that has solar heating panels. </span>