<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
Answer:
The active ingredients in baking soda (NaHCO3) are
and 
when Baking soda reacts with Acetic acid
Molecular equation
NaHCO3(aq) + CH3COOH(aq) → Na(CH3COO)(aq) + CO2(g) +H2O(l)
Ionic equation
→ 
as
is present on both sides so it will cancel out and the net ionic equation will be
→ 
The maximum safe operating temperature for this reaction is equal to 895°C.
<u>Given the following data:</u>
- Width of cylinder = 22 cm.
- Maximum safe pressure = 6.30mpa.
<u>Scientific data:</u>
- Ideal gas constant, R = 8.314 L-kPa/Kmol.
- Molar mass of of dinitrogen monoxide (
) gas = 66 g/mol.
Radius, r = 
<h3>How to calculate the maximum safe operating temperature.</h3>
First of all, we would determine the volume of the stainless-steel cylinder by using this formula:

Volume, V = 10,036.81
.
In liters, we have:
Volume, V = 10.04 Liters.
Next, we would determine the number of moles of dinitrogen monoxide (
) gas:

Number of moles = 8.136 moles.
Now, we can solve for the maximum safe operating temperature by applying the ideal gas equation:

T = 895.02 ≈ 895°C.
Read more on temperature here: brainly.com/question/24769208
Answer:
Molecular Weight
Explanation:
Chromium(III) Carbonate Cr2(CO3)3 Molecular Weight -- EndMemo.