Answer:
3. velocity is zero.
Explanation:
The velocity of a simple harmonic motion is given by

Here, <em>ω</em> is the angular velocity, <em>A</em> is the amplitude (or maximum displacement from the equilibrium point) and <em>x</em> is the displacement at any time.
At maximum displacement, <em>x </em>=<em> A</em>.<em> </em>Then

Therefore, at maximum displacement, velocity is 0.
Practically, this can be observed in a simple pendulum. As it approaches the maximum displacement, its velocity reduces. It becomes zero at this point and then reverses as the pendulum changes course. Then the velocity begins to increase. It becomes maximum at the equilibrium point but once past that, the velocity begins to reduce as it approaches the other amplitude.
For acceleration,

It follows that at maximum displacement, the acceleration is a maximum. The negative sign indicates that it is in an opposite direction to the displacement. Both kinetic energy (
) and linear momentum (
) are proportional to velocity; they are therefore both zero at the maximum displacement.
Co carbon monoxide
sorry friend i don't know other ones
1. When sewage treatment plants flood or debris reaches reservoirs and streams, the quality of the water is affected.
2. Storm surges cause beaches to shift and alter shape.
3. During flash floods, riverbanks erode.
A projectile motion is characterized by motion moving in a direction of an arc. It is acted upon by two component vectors: the horizontal and vertical. These two vectors are independent of each other when it comes to time of flight. The horizontal direction travels at constant speed, while the vertical direction travels at constant acceleration due to gravity, The time for an object to reach the ground would be equal, whether dropped from the sampe point or thrown in a projectile motion. Of course, this is assuming ideality wherein there is no air resistance.
So, the hang up time, or the time the object stayed on air is calculated using this equation:
a = Δv/t
Δv is the change in velocity which is the initial velocity when it was dropped to when it reaches zero velocity when it hits the ground.
9.81 m/s² = |(0 - 7.3)|/t
t = 0.744 seconds
Answer:

Explanation:
In that the gas thermometer is a constant volume, it is satisfied that:
How the boiling water is under regular atmospheric pressure, then

Thus

