1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashcka [7]
3 years ago
8

A wave x meters long has a speed of y meters per second. The frequency of the wave is

Physics
1 answer:
Sergio [31]3 years ago
6 0
The correct answer is (b.) y/x hertz. That is because the formula to get the frequency is f =  v / w. The following values (v=y meters / second; wavelength = x meters) must be substituted to the equation, which leaves you y/x hertz.
You might be interested in
Technician A says that the battery must be in good condition and at least 75% charged to accurately test an alternator. Technici
aalyn [17]

Answer:Technician A

Explanation:

Technician A statement is correct as  

The battery is required to start the vehicle which, in effect, rotates the alternator at sufficient speed to keep the battery charged. This means if the battery is low it is not possible to start the vehicle and thus we are unable to test the alternator.  

That is the battery is pre-requisite to test the alternator. So the battery must be at least a 75 % charge to test the alternator.

5 0
3 years ago
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
a 4kg metal block absorbs 5000j of energy and increases to a temperature of 22°c. the metal has a specific heat capacity of 250j
e-lub [12.9K]

Answer:

17 °C

Explanation:

From specific Heat capacity.

Q = cm(t₂-t₁)................. Equation 1

Where Q = Heat absorb by the metal block, c = specific heat capacity of the metal block, m = mass of the metal block, t₂ = final temperature, t₁ = Initial temperature.

make t₁ the subject of the equation

t₁ = t₂-(Q/cm)............... Equation 2

Given: t₂ = 22 °C, Q = 5000 J, m = 4 kg, c = 250 J/kg.°c

Substitute into equation 2

t₁ = 22-[5000/(4×250)

t₁ = 22-(5000/1000)

t₁ = 22-5

t₁ = 17 °C

6 0
2 years ago
The following are possible ways to express the quantity 0.391 (Give ALL correct answers, i.e., B, AC, BCD...) Note: 3.45E-8 is a
laiz [17]
To answer, evaluate the power of 10 in the given choices. If it is positve, move the decimal n places to the right. If it is negative, move the decimal n corresponding places to the left. From all the choices given, only the choices D, E, and F will give us the correct answer. 
4 0
3 years ago
An object initially at rest experiences an acceleration
lidiya [134]

Answer:

1.4m/s

Explanation:

Average velocity is the total distance covered divided by the total time taken.

 Average velocity  = \frac{total distance }{time }  

 Total time taken  = 5s + 6s  = 11s

The first distance covered  = velocity x time  = 1.4 x 5 = 7m

     second distance covered  = velocity x time  = 1.4 x 6  = 8.4m

So;

  Average velocity  = \frac{7 + 8.4}{11}    = 1.4m/s

5 0
3 years ago
Other questions:
  • A 8.00g sample of substance (substance, molar mass = 152.0 g/mol) was combusted in a bomb calorimeter with a heat capacity of 6.
    13·1 answer
  • Using the graph predict how many paper clipsa 7.5 v battery would pick up for both the 25 coil electromagnet and the 50 coil ele
    9·1 answer
  • A 0.180-kilogram car traveling at 0.80 m/s to the right collides with a 0.100-kilogram cart intially at rest. The carts lock tog
    7·1 answer
  • A ball is thrown upward from the ground with an initial speed speed of 25 meters/second; at the same instant, a ball is dropped
    8·1 answer
  • A shift of one fringe in the michelson-morley experiment corresponds to a change in the round-trip travel time along one arm of
    5·1 answer
  • A solid cylinder of mass 12.0 kgkg and radius 0.250 mm is free to rotate without friction around its central axis. If you do 75.
    15·1 answer
  • Which statement best describes gravity
    11·1 answer
  • a crane lifts a 75 kg mass at a height of 8m. calculate the gravitational potential energy gained by the mass (g= 10N)
    11·1 answer
  • II) A 0.40-kg ball, attached to the end of a horizontal ord, is rotated in a circle of radius 1.3 m on a friction- less horizont
    15·1 answer
  • Describe what happened. When was there more potential energy in the system?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!