Answer:



Explanation:
From the given information:
Let calculate the position vector of AB, AC, and AD
To start with AB; in order to calculate the position vector of AB ; we have:

To calculate the position vector of AC; we have:

To calculate the position vector of AD ; we have:

However; let's calculate the force in AB, AC and AD in their respective unit vector form;
To start with unit vector AB by using the following expression; we have:

The force AC in unit vector form is ;

The force AD in unit vector form is ;

Similarly ; the weight of the lunar Module is:
W = mg
where;
mass = 13500 kg
acceleration due to gravity= 1.82 m/s²
W = 13500 × 1.82
W = 24,570 N
Also. we known that the load is shared by four landing gears; Thus, the vertical reaction force exerted by the ground on each landing gear can be expressed as:


R = 6142.5 N
Now; the reaction force at point A in unit vector form is :

Using the force equilibrium at the meeting point of the coordinates at A.


![[F_{AB} (0.408 \ \hat i + 0.408 \ \hat j - 0.8165 \ \hat k ) N + F_{AC} (0.303 \ \hat i + 0.808 \ \hat j - 0.505 \ \hat k ) N + F_{AD} (0.808 \ \hat i + 0.303 \ \hat j - 0.505 \ \hat k) N + (6142.5 \ k^ \to ) ]](https://tex.z-dn.net/?f=%5BF_%7BAB%7D%20%280.408%20%5C%20%5Chat%20i%20%2B%200.408%20%5C%20%5Chat%20j%20-%200.8165%20%20%5C%20%5Chat%20k%20%29%20N%20%2B%20F_%7BAC%7D%20%280.303%20%20%5C%20%5Chat%20i%20%2B%200.808%20%20%5C%20%5Chat%20%20j%20-%200.505%20%20%5C%20%5Chat%20%20k%20%29%20N%20%2B%20F_%7BAD%7D%20%280.808%20%20%5C%20%5Chat%20%20i%20%2B%200.303%20%20%5C%20%5Chat%20%20j%20-%200.505%20%20%5C%20%5Chat%20%20k%29%20N%20%2B%20%286142.5%20%20%5C%20%20k%5E%20%5Cto%20%29%20%5D)
![= [ ( 0.408 F_{AB} +0.303 F_{AC} + 0.808F_{AD}) \hat i + (0.408 F_{AB}+0.808F_{AC}+0.303F_{AD}) \hat j + (-0.8165 F_{AB} -0.505F_{AC} -0.505 F_{AD} +6142.5 ) k ^ \to ] = 0](https://tex.z-dn.net/?f=%3D%20%5B%20%28%200.408%20F_%7BAB%7D%20%2B0.303%20F_%7BAC%7D%20%2B%200.808F_%7BAD%7D%29%20%5Chat%20i%20%2B%20%280.408%20F_%7BAB%7D%2B0.808F_%7BAC%7D%2B0.303F_%7BAD%7D%29%20%5Chat%20j%20%2B%20%28-0.8165%20F_%7BAB%7D%20-0.505F_%7BAC%7D%20-0.505%20F_%7BAD%7D%20%2B6142.5%20%29%20k%20%5E%20%5Cto%20%5D%20%3D%200)
From above; we need to relate and equate each coefficients i.e i ,j, and
on both sides ; so, we can re-write that above as;

Making rearrangement and solving by elimination method;


