1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bulgar [2K]
3 years ago
9

A photograph of the NASA Apollo 16 Lunar Module (abbreviated by NASA as the LM is shown on the surface of the Moon. Such spacecr

aft made six Moon landings during 1,969 - 72. A simplified model for one of the four landing gear assemblies of the LM is shown. If the LM has 13,500 kg mass, and rests on the surface of the Moon where acceleration due to gravity is 1.82 m/s^2, determine the force supported by members AB, AC, and AD. Assume the weight of the LM is uniformly supported by all four landing gear assemblies, and neglect friction between the landing gear and the surface of the Moon. TAB =N TAC = TAD =N A ( 2.6, 2.6, -2.2 ) m B(1.5, 1.5, 0)m C(2,1,-1.2)m D(1,2,-1.2)m
Engineering
1 answer:
tigry1 [53]3 years ago
7 0

Answer:

\mathbf{F_{AB} = 13785.06 N }

\mathbf{F_{AC} = -5062.38 N }

\mathbf{F_{AD} = -5062.38 N }

Explanation:

From the given information:

Let calculate the position vector of AB, AC, and AD

To start with AB; in order to calculate the position vector of AB ; we have:

r_{AB}^{\to} = r _{OA}^{\to} - r_{OB}^{\to}  \\ \\  r_{AB}^{\to} = (2.6 \  \hat i + 2.6 \  \hat j - 2.2 \  \hat k ) - ( 1.5 \  \hat i + \ 1. 5 \hat j ) \\  \\  r_{AB}^{\to} = ( 2.6 \  \hat i - 1.5 \  \hat i  + 2.6 \  \hat j - 1.5  \  \hat j  - 2.2 \  \hat k) \\ \\ r_{AB}^{\to} = (1.1  \  \hat i + 1.1 \  \hat j - 2.2 \  \hat k ) m

To calculate the position vector of AC; we have:

r_{AC}^{\to} = r _{OA}^{\to} - r_{OC}^{\to}  \\ \\  r_{AC}^{\to} = (2.6 \  \hat i + 2.6 \  \hat j - 2.2 \  \hat k ) - ( 2\  \hat i + \  \hat j - 1.2 \  \hat  k) \\  \\  r_{AC}^{\to} = ( 2.6 \  \hat i - 2\  \hat i  + 2.6 \  \hat j - \  \hat j  - 2.2 \  \hat k + 1.2 \  \hat  k) \\ \\ r_{AC}^{\to} = (0.6  \  \hat i + 1.6 \  \hat j - \  \hat k ) m

To calculate the position vector of AD ; we have:

r_{AD}^{\to} = r _{OA}^{\to} - r_{OD}^{\to}  \\ \\  r_{AC}^{\to} = (2.6 \  \hat i + 2.6 \  \hat j - 2.2 \  \hat k ) - ( \hat i + \ 2 \hat j - 1.2 \  \hat  k) \\  \\  r_{AD}^{\to} = ( 2.6 \  \hat i -   \hat i  + 2.6 \  \hat j -  2 \  \hat j  - 2.2 \  \hat k + 1.2 \  \hat  k) \\ \\ r_{AD}^{\to} = (1.6   \  \hat i + 0.6 \  \hat j - \  \hat k ) m

However; let's calculate the force in AB, AC and AD in their respective unit vector form;

To start with unit vector AB by using the following expression; we have:

F_{AB}^{\to} = F_{AB} \dfrac{ r _{AB}^{\to} }{|r_{AB}^{\to}} \\ \\ \\ F_{AB}^{\to} =  F_{AB}  \dfrac{(1.1  \ \hat i + 1.1 \ \hat  j - 2.2 \ \hat k )  }{\sqrt{ (1.1)^2 + (1.1)^2 + (-2.2 )^2 }} \\ \\   \\ F_{AB}^{\to} =  F_{AB}  \dfrac{(1.1  \ \hat i + 1.1 \ \hat  j - 2.2 \ \hat k ) }{ \sqrt{7.26}} \\ \\ \\ F_{AB}^{\to} =  F_{AB}  \dfrac{(1.1  \ \hat i + 1.1 \ \hat  j - 2.2 \ \hat k ) }{ 2.6944}  \\ \\ \\  F_{AB}^{\to} =  F_{AB} (0.408 \ \hat i+ 0.408 \ \hat  j - 0.8165 \ \hat  k ) N\\

The force AC in unit vector form is ;

F_{AC}^{\to} = F_{AC} \dfrac{ r _{AC}^{\to} }{|r_{AC}^{\to}} \\ \\ \\ F_{AC}^{\to} =  F_{AC}  \dfrac{(0.6  \ \hat i + 1.6 \ \hat  j -  \ \hat k )  }{\sqrt{ (0.6)^2 + (1.6)^2 + (-1 )^2 }} \\ \\   \\ F_{AC}^{\to} =  F_{AC}  \dfrac{(0.6  \ \hat i + 1.6 \ \hat  j - \ \hat k ) }{ \sqrt{3.92}} \\ \\ \\ F_{AC}^{\to} =  F_{AC}  \dfrac{(0.6  \ \hat i + 1.6 \ \hat  j - \ \hat k ) }{1.9798}  \\ \\ \\  F_{AC}^{\to} =  F_{AC} (0.303 \ \hat i+ 0.808 \ \hat  j - 0.505 \ \hat  k ) N\\

The force AD in unit vector form is ;

F_{AD}^{\to} = F_{AD} \dfrac{ r _{AD}^{\to} }{|r_{AD}^{\to}|} \\ \\ \\ F_{AD}^{\to} =  F_{AD}  \dfrac{(1.6  \ \hat i + 0.6 \ \hat  j -  \ \hat k )  }{\sqrt{ (1.6)^2 + (0.6)^2 + (-1 )^2 }} \\ \\   \\ F_{AD}^{\to} =  F_{AD}  \dfrac{(1.6  \ \hat i + 0.6 \ \hat  j - \ \hat k ) }{ \sqrt{3.92}} \\ \\ \\ F_{AD}^{\to} =  F_{AD}  \dfrac{(1.6  \ \hat i + 0.6 \ \hat  j - \ \hat k ) }{1.9798}  \\ \\ \\  F_{AD}^{\to} =  F_{AD} (0.808 \ \hat i+ 0.303 \ \hat  j - 0.505 \ \hat  k ) N\\

Similarly ; the weight of the lunar Module is:

W = mg

where;

mass = 13500 kg

acceleration due to gravity=  1.82 m/s²

W = 13500 × 1.82

W = 24,570 N

Also. we known that the load is shared by four landing gears; Thus, the vertical reaction force exerted by the ground on each landing gear can be expressed as:

R =\dfrac{W}{4}

R =\dfrac{24,570}{4}

R = 6142.5 N

Now; the reaction force at point A in unit vector form is :

R^{\to} = Rk^{\to} \\ \\ R^{\to} = (6142.5 \ k ^{\to}) \ N

Using the force equilibrium at the meeting point of the coordinates at A.

\sum F^{\to} = 0

F_{AB}^{\to} +F_{AC}^{\to} + F_{AD}^{\to} + R^{\to} =0

[F_{AB} (0.408 \ \hat i + 0.408 \ \hat j - 0.8165  \ \hat k ) N + F_{AC} (0.303  \ \hat i + 0.808  \ \hat  j - 0.505  \ \hat  k ) N + F_{AD} (0.808  \ \hat  i + 0.303  \ \hat  j - 0.505  \ \hat  k) N + (6142.5  \  k^ \to ) ]

= [ ( 0.408 F_{AB} +0.303 F_{AC} + 0.808F_{AD}) \hat i + (0.408 F_{AB}+0.808F_{AC}+0.303F_{AD}) \hat j + (-0.8165 F_{AB} -0.505F_{AC} -0.505 F_{AD} +6142.5 ) k ^ \to ] = 0

From above; we need to relate and equate each coefficients i.e i ,j, and k ^ \to on both sides ; so, we can re-write that above as;

0.408 F_{AB} +0.303 F_{AC} + 0.808F_{AD}) =0 \ \ \ \ \ \ \ \  \  \ \ \ \   \ \ \  --- (1)  \\ \\    0.408 F_{AB}+0.808F_{AC}+0.303F_{AD}) =0 \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \ --- (2)  \\ \\  -0.8165 F_{AB} -0.505F_{AC} -0.505 F_{AD} +6142.5 = 0 ---  (3)

Making rearrangement and solving by elimination method;

\mathbf{F_{AB} = 13785.06 N }

\mathbf{F_{AC} = -5062.38 N }

\mathbf{F_{AD} = -5062.38 N }

You might be interested in
What does it mean when it says technology is A dynamic process
Degger [83]

Answer:

It studies the process of technological change. Under the field of Technology Dynamics the process of technological change is explained by taking into account influences from "internal factors" as well as from "external factors

Explanation:

5 0
3 years ago
Pick a subjectarea/field/topic that you are interested in. For each of the following Bonham- Carver uses of GIS give an example
Vanyuwa [196]

Answer:

I hope following attachment will help you a lot!

Explanation:

3 0
3 years ago
A square loop of wire surrounds a solenoid. The side of the square is 0.1 m, while the radius of the solenoid is 0.025 m. The sq
Semmy [17]

Answer:

I=9.6×e^{-8}  A

Explanation:

The magnetic field inside the solenoid.

B=I*500*muy0/0.3=2.1×e ^-3×I.

so the total flux go through the square loop.

B×π×r^2=I×2.1×e^-3π×0.025^2

=4.11×e^-6×I

we have that

(flux)'= -U

so differentiating flux we get

so the inducted emf in the loop.

U=4.11×e^{-6}×dI/dt=4.11×e^-6×0.7=2.9×e^-6 (V)

so, I=2.9×e^{-6}÷30

I=9.6×e^{-8}  A

6 0
3 years ago
Water vapor at 6 MPa, 600 degrees C enters a turbine operating at steady state and expands to 10kPa. The mass flow rate is 2 kg/
kirill115 [55]

Answer:

Explanation:

Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

h_1=3658.8KL/Kg\\s_1=7.1693kJ/kg.k

Obtain the following properties at 10kPa from the table "saturated water"

h_{f2}=191.81KJ/Kg.K\\h_{fg2}=2392.1KJ/Kg\\s_{f2}=0.6492KJ/Kg.K\\s_{fg2}=7.4996KJ/Kg.K

Calculate the enthalpy at exit of the turbine using the energy balance equation.

\frac{dE}{dt}=Q-W+m(h_1-h_2)

Since, the process is isentropic process Q=0

0=0-W+m(h_1-h_2)\\h_2=h_1-\frac{W}{m}\\\\h_2=3658.8-\frac{2626}{2}\\\\=2345.8kJ/kg

Use the isentropic relations:

s_1=s_{2s}\\s_1=s_{f2}+x_{2s}s_{fg2}\\7.1693=6492+x_{2s}(7.4996)\\x_{2s}=87

Calculate the enthalpy at isentropic state 2s.

h_{2s}=h_{f2}+x_{2s}.h_{fg2}\\=191.81+0.87(2392.1)\\=2272.937kJ/kg

a.)

Calculate the isentropic turbine efficiency.

\eta_{turbine}=\frac{h_1-h_2}{h_1-h_{2s}}\\\\=\frac{3658.8-2345.8}{3658.8-2272.937}=0.947=94.7%

b.)

Find the quality of the water at state 2

since h_f at 10KPa <h_2<h_g at 10KPa

Therefore, state 2 is in two-phase region.

h_2=h_{f2}+x_2(h_{fg2})\\2345.8=191.81+x_2(2392.1)\\x_2=0.9

Calculate the entropy at state 2.

s_2=s_{f2}+x_2.s_{fg2}\\=0.6492+0.9(7.4996)\\=7.398kJ/Kg.K

Calculate the rate of entropy production.

S=\frac{Q}{T}+m(s_2-s_1)

since, Q = 0

S=m(s_2-s_1)\\=2\frac{kg}{s}(7.398-7.1693)kJ/kg\\=0.4574kW/k

6 0
3 years ago
2. BCD uses 6 bits to represent a symbol. a) True b) False​
Goshia [24]

Answer:

true because BCD used 6 bits to represent a symbol .

Explanation:

mark me brainlist

4 0
2 years ago
Other questions:
  • The outer surface of a spacecraft in space has an emissivity of 0.6 and an absorptivity of 0.2 for solar radiation. If solar rad
    12·1 answer
  • Is there a way to get the answers to a NCCER book test?
    7·1 answer
  • What causes decay in the amplitudes of vibration?
    11·1 answer
  • A compressed-air drill requires an air supply of 0.25 kg/s at gauge pressure of 650 kPa at the drill. The hose from the air comp
    6·1 answer
  • What is the angle of the input
    12·1 answer
  • Which of these parts of a cell phone is least likely to be found on the phone's circult board?
    5·1 answer
  • I wuv little space :)
    8·1 answer
  • GOOD AFTERNOON GUYSS!! ​
    15·2 answers
  • Whats the purpose of the keyway
    13·1 answer
  • Technician A says reducing spark advance can cause spark knock. Technician B says excessive carbon deposits can cause spark knoc
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!