<h3><u>
Answer:</u></h3>
When a welder must certify for their appropriate welder's certifications, all of the samples are basically flat work. Simple tack welds to deep fill welds are required.
<h3><u>
Explanation:</u></h3>
If you are welding two pieces of metal together, having the work as flat as possible allows for the best access for the weld to be proper. There are often more times then not that the work will not be in a flat position so if you are really just starting out, your practice welds should be made on flat work to get the skill necessary to weld well in other positions.
Answer:
<em>Written in Python</em>
def SumN(n):
total = 0
for i in range(1,n+1):
total = total + i
print("Total: ",total)
def SumNCubes(n):
total = 0
for i in range(1,n+1):
total = total + i**3
print("Cube: ",total)
n = int(input("User Input: "))
if n > 0:
SumN(n)
SumNCubes(n)
Explanation:
The SumN function is defined here
def SumN(n):
This line initializes the total to 0
total = 0
The following iteration compute the required sum
<em> for i in range(1,n+1):
</em>
<em> total = total + i
</em>
This line outputs the calculated sum
print("Total: ",total)
The SumNCubes function is defined here
def SumNCubes(n):
This line initializes the total to 0
total = 0
The following iteration compute the required sum of cubes
<em> for i in range(1,n+1):
</em>
<em> total = total + i**3
</em>
This line outputs the calculated sum of cubes
print("Cube: ",total)
The main starts here; The first line prompts user for input
n = int(input("User Input: "))
The next line checks if input is greater than 0; If yes, the two defined functions are called
if n > 0:
SumN(n)
SumNCubes(n)
Answer:
Explanation:
A conservator with a(n) guardianship background and knowledge of foreign languages will have more job opportunities because they broaden the scope of work a conservator can undertake.
Answer:
a)
(Ω-m)^{-1}
b) Resistance = 121.4 Ω
Explanation:
given data:
diameter is 7.0 mm
length 57 mm
current I = 0.25 A
voltage v = 24 v
distance between the probes is 45 mm
electrical conductivity is given as

![\sigma = \frac{0.25 \times 45\times 10^{-3}}{24 \pi [\frac{7 \times 10^{-3}}{2}]^2}](https://tex.z-dn.net/?f=%5Csigma%20%20%3D%20%5Cfrac%7B0.25%20%5Ctimes%2045%5Ctimes%2010%5E%7B-3%7D%7D%7B24%20%5Cpi%20%5B%5Cfrac%7B7%20%5Ctimes%2010%5E%7B-3%7D%7D%7B2%7D%5D%5E2%7D)
(Ω-m)^{-1}[/tex]
b)


![= \frac{57 \times 10^{-3}}{12.2 \times \pi [\frac{7 \times 10^{-3}}{2}]^2}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B57%20%20%5Ctimes%2010%5E%7B-3%7D%7D%7B12.2%20%5Ctimes%20%5Cpi%20%5B%5Cfrac%7B7%20%5Ctimes%2010%5E%7B-3%7D%7D%7B2%7D%5D%5E2%7D)
Resistance = 121.4 Ω