1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
masha68 [24]
3 years ago
12

Given the following materials and their corresponding thermal conductivity values, list them in order from most conductive to le

ast conductive.Sheet Rock: k = 0.43 W/(m*K)Masonite: k = 0.047 W/(m*K)Glass: k = 0.72 W/(m*K)Lexan: k = 0.19 W/(m*K)b) Given the following information, calculate the thermal conductivity using Fourier's Equation.q = 100 WA = 8 m^2ATΔT= 10L = 7 m
Engineering
1 answer:
Wittaler [7]3 years ago
3 0

Answer:

1) Glass

2) Rock sheet

3) Lexan

4) Masonite

b) k = 8.75 W/m.K

Explanation:

Given:

The thermal conductivity of certain materials as follows:

-Sheet Rock: k = 0.43 W/(m*K)

-Masonite: k = 0.047 W/(m*K)

-Glass: k = 0.72 W/(m*K)

-Lexan: k = 0.19 W/(m*K)

Data Given:

- Q = 100 W

- A = 8 m^2

- dT = 10 C

- L = 7 m

Find:

a) list the materials in order from most conductive to least conductive

b) calculate the thermal conductivity using Fourier's Equation

Solution:

- We know from Fourier's Law the relation between Heat transfer and thermal conductivity as follows:

                                   Q = k*A*dT / L

- From the relation above we can see that rate of heat transfer is directly proportional to thermal conductivity k.

- Hence, the list in order of decreasing conductivity is as follows:

- The list of materials in the decreasing order of thermal conductivity k is:

           1) Glass                 k = 0.72 W/m.K        

           2) Rock sheet      k = 0.43 W/m.K

           3) Lexan               k = 0.19 W/m.K

           4) Masonite          k = 0.047 W/m.K

- Use the relation given above we can compute the thermal conductivity k with the given data:

                                 k = Q*L / (A*dT)

                                 k = (100 W * 7 m) / (8 m^2*10 C)

                                 k = 8.75 W/m.K

You might be interested in
Who's your favorite singer and WHT your favorite song​
Anna007 [38]

Answer:

and my favorite song is popular loner

Explanation:

my favorite rapper is rod wave

6 0
3 years ago
Read 2 more answers
"Write a statement that outputs variable numItems. End with a newline. Program will be tested with different input values."
kirill [66]

Answer:

The solution code is written in Java.

System.out.println(numItems);

Explanation:

Java <em>println() </em>method can be used to display any string on the console terminal. We can use <em>println()</em> method to output the value held by variable <em>numItems.</em> The <em>numItems </em>is passed as the input parameter to <em>println()</em> and this will output the value of <em>numItems</em> to console terminal and at the same time the output with be ended with a newline automatically.  

6 0
3 years ago
What are the success factors for mechanical engineering?
Eva8 [605]

Answer:

-effective technical skills.

-the ability to work under pressure.

-problem-solving skills.

-creativity.

-interpersonal skills.

-verbal and written communication skills.

-commercial awareness.

-teamworking skills.

Explanation:

is this what ur looking for? if so there ya go lol

7 0
3 years ago
Read 2 more answers
Following are several z-transforms. For each one, determine inverse z-transform using both the method based on the partial-fract
tigry1 [53]

Answer:

For now the answer to this question is only for partial fraction. Find attached.

6 0
3 years ago
Find the number of Btu conducted through a wall in 8 hours. The wall is 8 feet high by 24 feet long and has a total R-value of 1
dedylja [7]

Answer:

ΔQ = 4930.37 BTu

Explanation:

given data

height h = 8ft

Δt = 8  hours

length L = 24 feet

R value = 16.2 hr⋅°F⋅ft² /Btu

inside temperature t1 = 68°F

outside temperature t2 = 16°F

to find out

number of Btu conducted

solution

we get here number of Btu conducted by this expression that s

\frac{\Delta Q}{\Delta t} =\frac{-A}{R} (t2 -t1)     ......................1

here A is area that is = h × L = 8 × 24 = 1492 ft²

put here value we get

\frac{\Delta Q}{8} =\frac{-192}{16.2} (16-68)

solve it we get

ΔQ = 4930.37 BTu

7 0
3 years ago
Other questions:
  • Explain the two advantages and the two disadvantages of fission as an energy source.
    12·1 answer
  • A(n) _________ is a current greater than the equipment rated current or conductor ampacity, which is confined to the normal cond
    12·1 answer
  • .........................................
    11·1 answer
  • Which excerpt from "The Chrysanthemums' best reveals that Elisa is proud of her
    6·1 answer
  • Researchers at the University of__________modified the iPhone to allow it to create medical images.
    9·2 answers
  • If fog is so bad that I can’t see for short distance what should I do
    9·2 answers
  • Recall the steps of the engineering design process. Compare and contrast the
    9·1 answer
  • Christopher has designed a fluid power system that repeatedly gets clogs. Which of the following objects should he choose to add
    13·1 answer
  • a storage tank contains liquid with a density of 0.0361 lbs per cubic inch. the height of liquid in the tank is 168 feet. what i
    8·1 answer
  • ANSWER QUICK
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!