Answer:
1) Glass
2) Rock sheet
3) Lexan
4) Masonite
b) k = 8.75 W/m.K
Explanation:
Given:
The thermal conductivity of certain materials as follows:
-Sheet Rock: k = 0.43 W/(m*K)
-Masonite: k = 0.047 W/(m*K)
-Glass: k = 0.72 W/(m*K)
-Lexan: k = 0.19 W/(m*K)
Data Given:
- Q = 100 W
- A = 8 m^2
- dT = 10 C
- L = 7 m
Find:
a) list the materials in order from most conductive to least conductive
b) calculate the thermal conductivity using Fourier's Equation
Solution:
- We know from Fourier's Law the relation between Heat transfer and thermal conductivity as follows:
Q = k*A*dT / L
- From the relation above we can see that rate of heat transfer is directly proportional to thermal conductivity k.
- Hence, the list in order of decreasing conductivity is as follows:
- The list of materials in the decreasing order of thermal conductivity k is:
1) Glass k = 0.72 W/m.K
2) Rock sheet k = 0.43 W/m.K
3) Lexan k = 0.19 W/m.K
4) Masonite k = 0.047 W/m.K
- Use the relation given above we can compute the thermal conductivity k with the given data:
k = Q*L / (A*dT)
k = (100 W * 7 m) / (8 m^2*10 C)
k = 8.75 W/m.K