Answer:
The velocities in points A and B are 1.9 and 7.63 m/s respectively. The Pressure at point B is 28 Kpa.
Explanation:
Assuming the fluid to be incompressible we can apply for the continuity equation for fluids:

Where A, V and Q are the areas, velocities and volume rate respectively. For section A and B the areas are:


Using the volume rate:


Assuming no losses, the energy equation for fluids can be written as:

Here P, V, p, z and g represent the pressure, velocities, height and gravity acceleration. Considering the zero height level at point A and solving for Pb:

Knowing the manometric pressure in point A of 70kPa, the height at point B of 1.5 meters, the density of water of 1000 kg/m^3 and the velocities calculated, the pressure at B results:



Answer:
(B) FALSE
Explanation:
view factor
depends on the surface emissivity and the surface of geometry view factor is the term used in radiative heat transfer. View factor is depends upon the radiation which leave the surface and strike the surface.View factor is also called shape factor configuration factor it is denoted by 
Answer:
The correct approach will be "Polymer".
Explanation:
- A polymer, because it has a very broad molecular structure, seems to be a class or kind of organic solid. It is indeed a material consisting of long sequences, or monomers, of simplified components.
- The existence of a large number of monomers which have been mentioned several times seems to be the principal design characteristic of polymeric materials.
Explanation:
40.4m
Explanation:
Pressure at depth is given as
P = P, + pgh
Final pressure at depth h= 5 Po
5Po= Po + pgh
pgh = 4Po = 4 x 1.01 x 10^5
h = (4.04×10^5)/ (1000x10)
h=40.4m