Answer:
2KCl + F₂ → 2KF + Cl₂
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
2KCl + F₂ → 2KF + Cl₂
In this equation mass of reactant and product is equal. There are 2 potassium 2 chlorine and fluorine atoms on both side of equation it means mass remain conserved.
All other options are incorrect because mass is not conserved.
Mg₂ + LiBr ---> LiMg + Br
In this equation mass of magnesium is more on reactant side.
Na +O₂ ---> Na₂O
In this equation there is more oxygen and less sodium on reactant side while there is more sodium and less oxygen on product side.
H₂O ---> H₂ + O₂
In this equation there is less oxygen on reactant side while more oxygen on product side.
Answer:
Foxes, and pine trees
Explanation:
Foxes have lots of fur on them and can survive cold and harsh winters. Pine tress are also found in this biome. (note this may or maybe right or wrong)
Answer:
Redox reaction and single displacement
Explanation:
This reaction is first of all a redox reaction. A redox reaction is a reaction that involves both oxidation and reduction. Oxidation involves increase in oxidation number while reduction involves decrease in oxidation number.
Copper (Cu) had an oxidation number of "0" as a reactant but had an oxidation number of "2+" in the product [Cu(NO₃)₂] hence oxidation occurred.
Nitrogen (N) had an oxidation number of "5+" in the reactant (HNO₃) but had an oxidation number of "4+" in the product (NO₂) hence reduction also occurred.
Also, from the reaction, it can be deduced that copper (Cu) displaced hydrogen (H) from the nitric acid (HNO₃) solution to form copper (II) nitrate [Cu(NO₃)₂]. It should be noted that copper can displace hydrogen because it is higher than hydrogen in the electrochemical series. Hence, this reaction can also be called a single displacement reaction. A single displacement reaction is a reaction in which an atom of an element replaces another atom in a compound (as seen in the equation given in the question).
OP already did it - CONGRATS!!
here are the steps 2 get the same ans:
(NH4)2 CO3 has 2x N, 8x H, 1x C and 3x O per molecule
so its molecular mass = 2x14 + 8x1 + 1x12 + 3x16
=28+8+12+48
=96g
of that 96g, 8x1=8g is due to Hydrogen
so by ratio n proportion, 1.00g will have 1x8/96 = 1/12g = 0.083g of H