Answer: velocity of the car is 113.33m/s
Explanation:
From Doppler effect,
in the case which the source is moving towards the observer at rest
f2 = v/(v-vs) *f1
where f2 is the final observed frequency
f1 is the initial observed frequency
v = 340m/s (speed of sound in air)
vs = velocity of the source of sound.
rearranging the above equation
f2*(v - vs) = f1* v
vs = (f1* v/f2) - v
but f1 = 80Hz
f2 = 60Hz
v = 340m/s
substituting,
vs = (80 x 340)/60 - 340
vs = 453.33 - 340
vs = 113.33m/s
velocity of the car is 113.33m/s
Answer:
Bouyancy
Explanation:
Bouyancy occurs when the upthrust exerted on an object is equal to the weight of object displaced. It is mostly applicable to low density objects for example balloon. When balloon is displaced in water, it floats. This is due to the effect of the upthrust acting on the balloon which allows the balloon to float and which is opposite the weight.
Note that the weight acts downwards the object while the upthrust always acts opposite (upward)
Answer:
The electromagnetic waves appear more blue in color.
Explanation:
Doppler's Effect: When a source moves with respect to the observer the frequency of the wave emitted from the source changes. If the source moves away from the observer, the frequency decreases and wavelength increases and vice versa.
Here the light source is moving towards the observer so the frequency will increase and wavelength will decrease. Thus the spectrum will shift towards the blue part. This is known as blue shift. The light wave will appear blue in color.
Answer:
20 cm
Explanation:
Given that a ball is released from a vertical height of 20 cm. It rolls down a "perfectly frictionless" ramp and up a similar ramp. What vertical height on the second ramp will the ball reach before it starts to roll back down?
Since it is perfectly frictionless, the Kinetic energy in which the ball is rolling will be equal to the potential energy at the edge of the ramp.
Therefore, the ball will reach 20 cm before it starts to roll back down.