Air resistance, also called drag, acts upon a falling body by slowing the body down to thr point where it stops accelerating, and it falls at a constant speed, known as the terminal volocity of a falling object. Air resistance depends on the cross sectional area of the object, which is why the effect of air resistance on a large flat surfaced object is much greater than on a small, streamlined object.
It’s gonna have to b since it’s decreasing
It’s gonna be Oxygen ....
When the object is at the top of the hill it has the most potential energy. If it is sitting still, it has no kinetic energy. As the object begins to roll down the hill, it loses potential energy, but gains kinetic energy. The potential energy of the position of the object at the top of the hill is getting converted into kinetic energy. Hope this helped. :)
Answer:
a. dW = ∫pEsinθdθ b. W = p.E
Explanation:
a. We know torque τ = p × E = pEsinθ where θ is the angle between p and E
Let the torque τ rotate the dipole by an amount dθ. So, the workdone dW = ∫τdθ = ∫pEsinθdθ
b. So, the total work done is gotten by integrating from 90 to θ. So,
W = ∫₉₀⁰dW
= ∫₉₀⁰pEsinθdθ
= pE∫₉₀⁰sinθdθ
= pE(cosθ - cos90)
=pEcosθ
= p.E