There are two ways to solve this. The longer way is to use those equations to calculate numbers for total distance.
The easier way is to find the area under the graph. That's right, AREA UNDER VELOCITY-TIME graph is the TOTAL DISTANCE travelled!
it's a shortcut.
Let's split up the area into a triangle and rectangle:
Triangle = 0.5(4-0)(10-0) = 20 m
Rectangle = (6-4)(10-0) = 20 m
Total distance = 40 m!
Answer:
a)At the mean position
b)At the extremes positions
Explanation:
Given that mass is having oscillation motion.
We know that
1. At the mean position -The velocity of the mass is maximum and the acceleration of the mass is minimum.The net force on the mass will be zero.
2. At the extreme position-The velocity of the mass is minimum and the acceleration of the mass is maximum.The net force on the mass will not be zero.
Therefore
a)At the mean position
b)At the extremes positions
Answer:
at point F
Explanation:
To know the point in which the pendulum has the greatest potential energy you can assume that the zero reference of the gravitational energy (it is mandatory to define it) is at the bottom of the pendulum.
Then, when the pendulum reaches it maximum height in its motion the gravitational potential energy is
U = mgh
m: mass of the pendulum
g: gravitational constant
The greatest value is obtained when the pendulum reaches y=h
Furthermore, at this point the pendulum stops to come back in ts motion and then the speed is zero, and so, the kinetic energy (K=1/mv^2=0).
A) answer, at point F
<span>122.0 km/hr. First let’s make sure all of our units are in the base meter form: i.e. convert 5km to 5000m. (We will convert back to km later). The first thing to do is look at the equation relating velocity, acceleration, and distance: Vf^2 = Vi^2 + 2*a*d, where Vf is final velocity, Vi is initial velocity, a is acceleration, and d is distance. 25^2 = 10^2 + 2*a*5000 =?> 625 = 100 +10000a => a= 0.0525m/s^2. Now that we have acceleration, we can use the same equation again with different numbers.: Vf^2 = Vi^2 + 2*a*d = 25^2 + 2*0. 0525m*5000 = 625 + 525 =1150 => Vf^2 = 1150 => 33.9m/s. Convert to km/hour: 33.9m/s * 1km/1000m *60s/1min * 60min/ 1 hr = 122.0 km/hr.</span>
Answer:
No collision or altered trajectory
Similar percentage of oxygen isotopes
Explanation:
Capture hypothesis states that the Earth captured the moon. This is highly unlikely as such interactions of this type of bodies leads to a collision or their trajectories are altered. The percentage of the oxygen isotopes such as 16O, 17O and 18O in the Moon's basalts are almost identical with Earth. While meteorites have different percentage of oxygen isotopes.
Currently the accepted hypothesis is the giant-impact hypothesis.