Answer:
They're going to come home as soon as the movie is over.
The final velocity of the truck is found as 146.969 m/s.
Explanation:
As it is stated that the lorry was in standstill position before travelling a distance or covering a distance of 3600 m, the initial velocity is considered as zero. Then, it is stated that the lorry travels with constant acceleration. So we can use the equations of motion to determine the final velocity of the lorry when it reaches 3600 m distance.
Thus, a initial velocity (u) = 0, acceleration a = 3 m/s² and the displacement s is 3600 m. The third equation of motion should be used to determine the final velocity as below.

Then, the final velocity will be

Thus, the final velocity of the truck is found as 146.969 m/s.
Answer:
Explanation:
We know that the volume V for a sphere of radius r is

If we got an uncertainty
the formula for the uncertainty of V is:

We can calculate this uncertainty, first we obtain the derivative:


And using it in the formula:



The relative uncertainty is:



Using the values for the problem:

This is, a percent uncertainty of 4.77 %