Answer:
The best time to view the spectacle on Dec. 21 will be around an hour after sunset.
We have centripetal acceleration = 
So, v = 
Now by equation of motion we have S= ut +0.5a
S =displacement, u = initial velocity, a= acceleration and t = time
Here S = 2r and a = g , u = 0


Distance traveled in horizontal direction = 
The time taken by the ballast bag to reach the ground is 2.18 s
The ballast bag at rest with respect to the balloon has the upward velocity (u) of 4.6 m/s , which is the velocity of the balloon. When it is dropped from the balloon, its motion is similar to an object thrown upwards with an initial velocity <em>u </em>and it falls under the acceleration due to gravity<em> g.</em>
Taking the upward direction as positive and the downward direction as negative, the following equation of motion may be used.

The bag makes a net displacement <em>s</em> of 13.4 m downwards, hence

Its initial velocity is

The acceleration due to gravity acts downwards and hence it is negative.

Use the values in the equation of motion and write an equation for t.

Solving the equation for t and taking only the positive value for t,
t=2.18 s
Answer:
8
Explanation:
Applying,
v = λf................ Equation 1
Where v = velocity/ speed of the wave, λ = wave length of the wave, f = number of waves the person surf in one seconds.
make f the subject of the equation
f = v/λ............ Equation 2
From the question,
Given: v = 1.6 m/s, λ = 24 m
Substitute these values into equation 2
f = 1.6/24
f = 0.0667 wave/seconds.
If,
in one seconds, the person surf a total wave crest of 0.0667
Therefore,
in one hours, he will surf a total wave crest of (0.0667×60×60) = 240 waves crest
He rides for every 30th wave crest,
Hence,
number of wave crest the person surf in one hour = 240/30 = 8
If the wavelength increases (gets longer), then the frequency <em>decreases</em>.
(A wave occurs less often.)