The balanced equation for the above reaction is;
4NH₃ + 7O₂ --> 4NO₂ + 6H₂O
stoichiometry of NH₃ to NO₂ is 4:4
the number of NH₃ moles consumed are - 4.0 g / 17 g/mol = 0.24 mol
number of NH₃ moles reacted are equivalent to number of NO₂ moles formed
therefore number of NO₂ moles formed - 0.24 mol x 46 g/mol = 11.04 g
mass of NO₂ formed is 11.04 g
Answer:
<em>C. Potential energy</em>
Explanation:
Kinetic energy and gravitational potential energy are both forms of potential energy. Potential energy is stored energy, when an object is not in motion it has stored energy. When an object is an motion it has kinetic energy. An object posses gravitational potential energy when it is above or below the zero height.
The solutions vapor pressure would be lower.
Answer:
1120 L.
Explanation:
Hello!
In this case, as no conditions of pressure of temperature are given for this problem, we can assume that the scuba diver dives at STP (1 atm and 273.15 K), which means that 1 mole of air would occupy a volume of 22.4 L.
In such a way, since she needs 50.0 moles of air, the following ratio is useful to compute the size (volume) of the tank she needs:

Thereby, we plug in to obtain:

Best regards!
Answer:
5.00 mol Mg
10.0 mol Cl
40.0 mol O
Explanation:
Step 1: Given data
Moles of Mg(ClO₄)₂: 5.00 mol
Step 2: Calculate the number of moles of Mg
The molar ratio of Mg(ClO₄)₂ to Mg is 1:1.
5.00 mol Mg(ClO₄)₂ × 1 mol Mg/1 mol Mg(ClO₄)₂ = 5.00 mol Mg
Step 3: Calculate the number of moles of Cl
The molar ratio of Mg(ClO₄)₂ to Cl is 1:2.
5.00 mol Mg(ClO₄)₂ × 2 mol Cl/1 mol Mg(ClO₄)₂ = 10.0 mol Cl
Step 4: Calculate the number of moles of O
The molar ratio of Mg(ClO₄)₂ to Cl is 1:8.
5.00 mol Mg(ClO₄)₂ × 8 mol O/1 mol Mg(ClO₄)₂ = 40.0 mol O