Guess on information you already had
<span>At higher altitudes (and thus lower atmospheric pressures), water boils at a lower temperature. This is because the lack of vapor pressure at that altitude doesn't constrain the speed of the molecules with barometric pressure. Therefore, the water begins boiling at a lower temperature. This is often a disadvantage because even if the water is boiling, it won't be hot enough for meals (which is why heat and temperature are distinct). That's why we have pressure cookers, which manage to keep a stable boiling point.
Did that help?</span>
Answer:
C6H12O6 + 6O2 + 38ADP + 38Pi => 6CO2 + 6H2O + 38ATP is the chemical equation for cellular respiration
Explanation:
Cellular respiration is the process by which cells breakdown glucose molecules to produce energy in the form of ATP molecules and release waste products such as carbon dioxide and water molecules. Cellular respiration involves a series of reaction pathways such as glycolysis, pyruvate oxidation, citric acid cycle and the oxidative phosphorylation pathway.
The first step of glycolysis breaks down a glucose molecule to release two pyruvate molecules.
In pyruvate oxidation, two molecules of pyruvate are oxidized to acetyl-CoA molecules.
In the citric acid cycle, the acetyl-CoA molecules are used to produce the electron carriers NADH and FADH2.
In the oxidative phosphorylation pathway, NADH and FADH2 donate their electrons to oxygen and ATP molecules are produced using the energy of electron transfer and proton-pumping.
The overall equation for cellular respiration is given as:
C6H12O6 + 6O2 + 38ADP + 38Pi => 6CO2 + 6H2O + 38ATP
Answer:
Colloidal can not be separated through filtration.
Suspension can be separated through filtration.
Explanation:
Colloidal:
Colloidal consist of the particles having size between 1 - 1000 nm i.e, 0.001- 1μm. While the pore size of filter paper is 2μm. That's why we can not separate the colloidal through the filtration. However it can be separated through the ultra filtration. In ultra filtration the pore size is reduced by soaking the filter paper in gelatin and then in formaldehyde. This is only in case of when solid colloidal is present, if colloid is liquid , there is no solid particles present and ultra filtration can not be used in this case.
Suspension:
The particle size in suspension is greater than 1000 nm. The particles in suspension can be separated through the filtration. These particles are large enough and can be seen through naked eye.