According to the valence shell electron pair repulsion (VSPER) theory, an ammonia molecule <span> has a </span>trigonal pyramidal<span> shape with an experimental bond angle measure of 106.7 degrees. This is why it is difficult to accurately represent ammonia two-dimensionally because the molecular structure entails a 3-D projection with angles in it unlike the linear structure.</span>
Thus, it follows that after 4 to 5 half-lives, the plasma concentrations of a given drug will be below a clinically relevant concentration and thus will be considered eliminated. Conversely, the accumulation of a drug can reach a steady-state during an infusion
A3B2
bond is ionic
A is in group 2 (you can pick any like Ca)
B is in group 5 (like B)
the other question:
the reason is they are neutral gas and they already have 8 electrons except for He which is 2 and are completely stable so don't want to loose any electron vs Li and Na which have only 1 electron in the outer layer and are willing to loose that one to become stable.
2.20 M means there are 2,20 mol of NaOH in 1 000 mL of solution. We can use this proportion as a conversion factor: