Answer: C
Explanation: Took the test
Answer:
The equilibrium expression is:
CoC2O4(s)⇌Co2+(aq)+C2O2−4(aq)
For this reaction:
Ksp = [Co2+][C2O2−4]=1.96×10−8
Explanation:
Batteries will not clot if cobalt ions are removed from its cells. Some blood collection tubes contain salts of the oxalate ion,
C2O2−4
, for this purpose. At sufficiently high concentrations, the calcium
and oxalate ions form solid, CoC2O4·H2O (which also contains water bound in the solid). The concentration of Co2+ in a sample of blood serum is 2.2 × 10–3M. What concentration of
C2O2−4
ion must be established before CoC2O4·H2O begins to precipitate.
CoC2O4 does not appear in this expression because it is a solid. Water does not appear because it is the solvent.
Solid CoC2O4 does not begin to form until Q equals Ksp. Because we know Ksp and [Co2+], we can solve for the concentration of
C2O2−4
that is necessary to produce the first trace of solid:
<span>NH4+ and NO3- because barium phosphate is insoluble </span>
I would say 2 because co2 goes out and o goes in
The breakdown of NO3 in the day leads to more consumption of N2O5 in the day hence its concentration is greater at night than in the day.
<h3>What is equilibrium constant?</h3>
The equilibrium constant is a number that shows how much reactants are converted to products in a reaction. It is often shown as capital letter K in English.
Given the situation described in the question, we know that the concentration of N205 will be higher at night, because the decomposition of NO3(g) in the daytime will result in an increase in the rate of consumption of N2O5(g) to reform NO3(g).
Learn more about equilibrium constant: brainly.com/question/17960050