Answer:
hello your question is incomplete attached below is the missing equation related to the question
answer : 40.389° , 38.987° , 38° , 39.869° , 40.265°
Explanation:
<u>Determine the friction angle at each depth</u>
attached below is the detailed solution
To calculate the vertical stress = depth * unit weight of sand
also inverse of Tan = Tan^-1
also qc is in Mpa while σ0 is in kPa
Friction angle at each depth
2 meters = 40.389°
3.5 meters = 38.987°
5 meters = 38.022°
6.5 meters = 39.869°
8 meters = 40.265°
Answer:
They find problems and solutions by working together
Explanation:
I believe the answer is D: brazing
Hope this helps you have a good night
Answer:
The required diameter of the fuse wire should be 0.0383 cm to limit the current to 0.53 A with current density of 459 A/cm²
.
Explanation:
We are given current density of 459 A/cm² and we want to limit the current to 0.53 A in a fuse wire. We are asked to find the corresponding diameter of the fuse wire.
Recall that current density is given by
j = I/A
where I is the current flowing through the wire and A is the area of the wire
A = πr²
but r = d/2 so
A = π(d/2)²
A = πd²/4
so the equation of current density becomes
j = I/πd²/4
j = 4I/πd²
Re-arrange the equation for d
d² = 4I/jπ
d = √4I/jπ
d = √(4*0.53)/(459π)
d = 0.0383 cm
Therefore, the required diameter of the fuse wire should be 0.0383 cm to limit the current to 0.53 A with current density of 459 A/cm²
.
Answer:
t = 30.1 sec
Explanation:
If the ant is moving at a constant speed, the velocity vector will have the same magnitude at any point, and can be decomposed in two vectors, along directions perpendicular each other.
If we choose these directions coincident with the long edge of the paper, and the other perpendicular to it, the components of the velocity vector, along these axes, can be calculated as the projections of this vector along these axes.
We are only interested in the component of the velocity across the paper, that can be calculated as follows:
vₓ = v* sin θ, where v is the magnitude of the velocity, and θ the angle that forms v with the long edge.
We know that v= 1.3 cm/s, and θ = 61º, so we can find vₓ as follows:
vₓ = 1.3 cm/s * sin 61º = 1.3 cm/s * 0.875 = 1.14 cm/s
Applying the definition of average velocity, we can solve for t:
t =
= 
⇒ t = 30.1 sec